Skip to main content
Log in

Synthetic Prion Selection and Adaptation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Prion pathologies are characterized by the conformational conversion of the cellular prion protein (PrPC) into a pathological infectious isoform, known as PrPSc. The latter acquires different abnormal conformations, which are associated with specific pathological phenotypes. Recent evidence suggests that prions adapt their conformation to changes in the context of replication. This phenomenon is known as either prion selection or adaptation, where distinct conformations of PrPSc with higher propensity to propagate in the new environment prevail over the others. Here, we show that a synthetically generated prion isolate, previously subjected to protein misfolding cyclic amplification (PMCA) and then injected in animals, is able to change its biochemical and biophysical properties according to the context of replication. In particular, in second transmission passage in vivo, two different prion isolates were found: one characterized by a predominance of the monoglycosylated band (PrPSc-M) and the other characterized by a predominance of the diglycosylated one (PrPSc-D). Neuropathological, biochemical, and biophysical assays confirmed that these PrPSc possess distinctive characteristics. Finally, PMCA analysis of PrPSc-M and PrPSc-D generated PrPSc (PrPSc-PMCA) whose biophysical properties were different from those of both inocula, suggesting that PMCA selectively amplified a third PrPSc isolate. Taken together, these results indicate that the context of replication plays a pivotal role in either prion selection or adaptation. By exploiting the ability of PMCA to mimic the process of prion replication in vitro, it might be possible to assess how changes in the replication environment influence the phenomenon of prion selection and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McKinley MP, Bolton DC, Prusiner SB (1983) A protease-resistant protein is a structural component of the scrapie prion. Cell 35(1):57–62

    Article  CAS  Google Scholar 

  2. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS (2004) Conformational variations in an infectious protein determine prion strain differences. Nature 428(6980):323–328

    Article  CAS  Google Scholar 

  3. Bartz JC (2016) Prion strain diversity. Cold Spring Harb Perspect Med 6(12)

    Article  Google Scholar 

  4. Dickinson AG, Meikle VM (1971) Host-genotype and agent effects in scrapie incubation: change in allelic interaction with different strains of agent. Mol Gen Genet 112(1):73–79

    Article  CAS  Google Scholar 

  5. Carp RI, Callahan SM, Sersen EA, Moretz RC (1984) Preclinical changes in weight of scrapie-infected mice as a function of scrapie agent-mouse strain combination. Intervirology 21(2):61–69

    Article  CAS  Google Scholar 

  6. Fraser H (1993) Diversity in the neuropathology of scrapie-like diseases in animals. Br Med Bull 49(4):792–809

    Article  CAS  Google Scholar 

  7. Fraser H, Dickinson AG (1968) The sequential development of the brain lesion of scrapie in three strains of mice. J Comp Pathol 78(3):301–311

    Article  CAS  Google Scholar 

  8. Khalili-Shirazi A, Summers L, Linehan J, Mallinson G, Anstee D, Hawke S, Jackson GS, Collinge J (2005) PrP glycoforms are associated in a strain-specific ratio in native PrPSc. J Gen Virol 86(Pt 9):2635–2644

    Article  CAS  Google Scholar 

  9. Peretz D, Williamson RA, Legname G, Matsunaga Y, Vergara J, Burton DR, DeArmond SJ, Prusiner SB et al (2002) A change in the conformation of prions accompanies the emergence of a new prion strain. Neuron 34(6):921–932

    Article  CAS  Google Scholar 

  10. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 4(10):1157–1165

    Article  CAS  Google Scholar 

  11. Caughey B, Raymond GJ, Bessen RA (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem 273(48):32230–32235

    Article  CAS  Google Scholar 

  12. Makarava N, Savtchenko R, Baskakov IV (2013) Selective amplification of classical and atypical prions using modified protein misfolding cyclic amplification. J Biol Chem 288(1):33–41

    Article  CAS  Google Scholar 

  13. Morales R, Abid K, Soto C (2007) The prion strain phenomenon: molecular basis and unprecedented features. Biochim Biophys Acta 1772(6):681–691

    Article  CAS  Google Scholar 

  14. Bartz JC, Bessen RA, McKenzie D, Marsh RF, Aiken JM (2000) Adaptation and selection of prion protein strain conformations following interspecies transmission of transmissible mink encephalopathy. J Virol 74(12):5542–5547

    Article  CAS  Google Scholar 

  15. Bessen RA, Marsh RF (1992) Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73(Pt 2):329–334

    Article  Google Scholar 

  16. Bessen RA, Marsh RF (1994) Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J Virol 68(12):7859–7868

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bessen RA, Marsh RF (1992) Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 66(4):2096–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305(5684):673–676

    Article  CAS  Google Scholar 

  19. Colby DW, Giles K, Legname G, Wille H, Baskakov IV, DeArmond SJ, Prusiner SB (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci U S A 106(48):20417–20422

    Article  CAS  Google Scholar 

  20. Jeffrey M, McGovern G, Makarava N, Gonzalez L, Kim YS, Rohwer RG, Baskakov IV (2014) Pathology of SSLOW, a transmissible and fatal synthetic prion protein disorder, and comparison with naturally occurring classical transmissible spongiform encephalopathies. Neuropathol Appl Neurobiol 40(3):296–310

    Article  CAS  Google Scholar 

  21. Makarava N, Kovacs GG, Savtchenko R, Alexeeva I, Budka H, Rohwer RG, Baskakov IV (2012) Stabilization of a prion strain of synthetic origin requires multiple serial passages. J Biol Chem 287(36):30205–30214

    Article  CAS  Google Scholar 

  22. Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H, Rohwer RG, Baskakov IV (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119(2):177–187

    Article  CAS  Google Scholar 

  23. Moda F, Le TN, Aulic S, Bistaffa E, Campagnani I, Virgilio T, Indaco A, Palamara L et al (2015) Synthetic prions with novel strain-specified properties. PLoS Pathog 11(12):e1005354

    Article  Google Scholar 

  24. Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411(6839):810–813

    Article  CAS  Google Scholar 

  25. Saa P, Castilla J, Soto C (2006) Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem 281(46):35245–35252

    Article  CAS  Google Scholar 

  26. Bieschke J, Weber P, Sarafoff N, Beekes M, Giese A, Kretzschmar H (2004) Autocatalytic self-propagation of misfolded prion protein. Proc Natl Acad Sci U S A 101(33):12207–12211

    Article  CAS  Google Scholar 

  27. Atarashi R, Wilham JM, Christensen L, Hughson AG, Moore RA, Johnson LM, Onwubiko HA, Priola SA et al (2008) Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods 5(3):211–212

    Article  CAS  Google Scholar 

  28. Castilla J, Gonzalez-Romero D, Saa P, Morales R, De Castro J, Soto C (2008) Crossing the species barrier by PrP(Sc) replication in vitro generates unique infectious prions. Cell 134(5):757–768

    Article  CAS  Google Scholar 

  29. Barria MA, Telling GC, Gambetti P, Mastrianni JA, Soto C (2011) Generation of a new form of human PrP(Sc) in vitro by interspecies transmission from cervid prions. J Biol Chem 286(9):7490–7495

    Article  CAS  Google Scholar 

  30. Chianini F, Fernandez-Borges N, Vidal E, Gibbard L, Pintado B, de Castro J, Priola SA, Hamilton S et al (2012) Rabbits are not resistant to prion infection. Proc Natl Acad Sci U S A 109(13):5080–5085

    Article  CAS  Google Scholar 

  31. Gonzalez-Montalban N, Lee YJ, Makarava N, Savtchenko R, Baskakov IV (2013) Changes in prion replication environment cause prion strain mutation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27(9):3702–3710

    Article  CAS  Google Scholar 

  32. Mahal SP, Browning S, Li J, Suponitsky-Kroyter I, Weissmann C (2010) Transfer of a prion strain to different hosts leads to emergence of strain variants. Proc Natl Acad Sci U S A 107(52):22653–22658

    Article  CAS  Google Scholar 

  33. Vascellari S, Orru CD, Hughson AG, King D, Barron R, Wilham JM, Baron GS, Race B et al (2012) Prion seeding activities of mouse scrapie strains with divergent PrPSc protease sensitivities and amyloid plaque content using RT-QuIC and eQuIC. PLoS One 7(11):e48969

    Article  CAS  Google Scholar 

  34. Ayers JI, Schutt CR, Shikiya RA, Aguzzi A, Kincaid AE, Bartz JC (2011) The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLoS Pathog 7(3):e1001317

    Article  CAS  Google Scholar 

  35. Bett C, Joshi-Barr S, Lucero M, Trejo M, Liberski P, Kelly JW, Masliah E, Sigurdson CJ (2012) Biochemical properties of highly neuroinvasive prion strains. PLoS Pathog 8(2):e1002522

    Article  CAS  Google Scholar 

  36. Legname G, Nguyen HO, Peretz D, Cohen FE, DeArmond SJ, Prusiner SB (2006) Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc Natl Acad Sci U S A 103(50):19105–19110

    Article  CAS  Google Scholar 

  37. Hannaoui S, Amidian S, Cheng YC, Duque Velasquez C, Dorosh L, Law S, Telling G, Stepanova M et al (2017) Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency. PLoS Pathog 13(8):e1006553

    Article  Google Scholar 

  38. Makarava N, Baskakov IV (2012) Genesis of tramsmissible protein states via deformed templating. Prion 6(3):252–255

    Article  CAS  Google Scholar 

  39. Makarava N, Kovacs GG, Savtchenko R, Alexeeva I, Ostapchenko VG, Budka H, Rohwer RG, Baskakov IV (2012) A new mechanism for transmissible prion diseases. J Neurosci 32(21):7345–7355

    Article  CAS  Google Scholar 

  40. Lloyd SE, Linehan JM, Desbruslais M, Joiner S, Buckell J, Brandner S, Wadsworth JD, Collinge J (2004) Characterization of two distinct prion strains derived from bovine spongiform encephalopathy transmissions to inbred mice. J Gen Virol 85(Pt 8):2471–2478

    Article  CAS  Google Scholar 

  41. Le Dur A, Lai TL, Stinnakre MG, Laisne A, Chenais N, Rakotobe S, Passet B, Reine F et al (2017) Divergent prion strain evolution driven by PrP(C) expression level in transgenic mice. Nat Commun 8:14170

    Article  Google Scholar 

  42. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347

    Article  CAS  Google Scholar 

  43. Goold R, McKinnon C, Tabrizi SJ (2015) Prion degradation pathways: potential for therapeutic intervention. Mol Cell Neurosci 66(Pt A):12–20

    Article  CAS  Google Scholar 

  44. McKinnon C, Goold R, Andre R, Devoy A, Ortega Z, Moonga J, Linehan JM, Brandner S et al (2016) Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin-proteasome system. Acta Neuropathol 131(3):411–425

    Article  CAS  Google Scholar 

  45. Weissmann C, Li J, Mahal SP, Browning S (2011) Prions on the move. EMBO Rep 12(11):1109–1117

    Article  CAS  Google Scholar 

  46. Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE (2015) The multivesicular body is the major internal site of prion conversion. J Cell Sci 128(7):1434–1443

    Article  CAS  Google Scholar 

  47. Gonzalez-Montalban N, Makarava N, Ostapchenko VG, Savtchenk R, Alexeeva I, Rohwer RG, Baskakov IV (2011) Highly efficient protein misfolding cyclic amplification. PLoS Pathog 7(2):e1001277

    Article  CAS  Google Scholar 

  48. Moudjou M, Sibille P, Fichet G, Reine F, Chapuis J, Herzog L, Jaumain E, Laferriere F et al (2013) Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. MBio 5(1):e00829–e00813

    Article  Google Scholar 

  49. Shikiya RA, Bartz JC (2011) In vitro generation of high-titer prions. J Virol 85(24):13439–13442

    Article  CAS  Google Scholar 

  50. Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206

    Article  CAS  Google Scholar 

  51. Fernandez-Borges N, Di Bari MA, Erana H, Sanchez-Martin M, Pirisinu L, Parra B, Elezgarai SR, Vanni I et al (2017) Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathol

  52. Ghaemmaghami S, Ahn M, Lessard P, Giles K, Legname G, DeArmond SJ, Prusiner SB (2009) Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog 5(11):e1000673

    Article  Google Scholar 

  53. Bian J, Kang HE, Telling GC (2014) Quinacrine promotes replication and conformational mutation of chronic wasting disease prions. Proc Natl Acad Sci U S A 111(16):6028–6033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Associazione Italiana Encefalopatie da Prioni (A.I.En.P.).

Funding

This work was supported/partially supported by the Italian Ministry of Health (GR-2013-02355724 and RC) to FM, the Italian Ministry of Health to FT, and the International School for Advanced Studies (SISSA) intramural funding to GL.

Author information

Authors and Affiliations

Authors

Contributions

EB, FM, and GL designed the experiments and EB, TV, IC, CMGDL, MR, and GS performed the practical work. TV and IC performed the animal inoculations. EB, FM, GG, FT, and GL wrote and revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Giuseppe Legname.

Ethics declarations

The study, including its Ethics aspects, was approved by the Italian Ministry of Health (Permit Number, NP-02-14).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Electronic Supplementary Material

ESM 1

Biochemical characterization of PrPSc in eyes and spleen of animals with PrPSc-M and PrPSc-D. (JPG 210 kb)

ESM 2

PMCA analysis of PrPSc-M and PrPSc-D spleen-derived PrPSc. (JPG 188 kb)

ESM 3

ThS staining of frontal cortex of mice with PrPSc-M and PrPSc-D. (JPG 352 kb)

ESM 4

PMCA amplification of serial dilutions of PrPSc-M and PrPSc-D. PrPSc-M and PrPSc-D were serially diluted in normal mouse brain homogenates and subjected to 2 serial rounds of amplification by means of PMCA. All amplified samples showed a PrPSc characterized by a prevalence of the diglycosylated isoform of the protein. (JPG 768 kb)

ESM 5

RT-QuIC assay of PrPSc-M and PrPSc-D isolates. (A) Representative kinetic curves of recombinant mouse PrP (recPrP) seeded with PrPSc-M and PrPSc-D and PrPSc-PMCA. (B) Analysis of the slope of PrPSc-M and PrPSc-D and PrPSc-PMCA aggregation kinetic curves. (* p<0.05, ** p<0.01) (C) Analysis of the slope of RML and RML-PMCA aggregation kinetic curves. (JPG 608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bistaffa, E., Moda, F., Virgilio, T. et al. Synthetic Prion Selection and Adaptation. Mol Neurobiol 56, 2978–2989 (2019). https://doi.org/10.1007/s12035-018-1279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1279-2

Keywords

Navigation