Skip to main content

Advertisement

Log in

Nicotine Modulates Mitochondrial Dynamics in Hippocampal Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondria are widely recognized as fundamental organelles for cellular physiology and constitute the main energy source for different cellular processes. The location, morphology, and interactions of mitochondria with other organelles, such as the endoplasmic reticulum (ER), have emerged as critical events capable of determining cellular fate. Mitochondria-related functions have proven particularly relevant in neurons; mitochondria are necessary for proper neuronal morphogenesis and the highly energy-demanding synaptic transmission process. Mitochondrial health depends on balanced fusion-fission events, termed mitochondrial dynamics, to repair damaged organelles and/or improve the quality of mitochondrial function, ATP production, calcium homeostasis, and apoptosis, which represent some mitochondrial functions closely related to mitochondrial dynamics. Several neurodegenerative disorders, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, have been correlated with severe mitochondrial dysfunction. In this regard, nicotine, which has been associated with relevant neuroprotective effects mainly through activation of the nicotinic acetylcholine receptor (nAChR), exerts its effects at least in part by acting directly on mitochondrial physiology and morphology. Additionally, a recent description of mitochondrial nAChR localization suggests a nicotine-dependent mitochondrial function. In the present work, we evaluated in cultured hipocampal neurons the effects of nicotine on mitochondrial dynamics by assessing mitochondrial morphology, membrane potential, as well as interactions between mitochondria, cytoskeleton and IP3R, levels of the cofactor PGC-1α, and fission-fusion-related proteins. Our results suggest that nicotine modulates mitochondrial dynamics and influences mitochondrial association from microtubules, increasing IP3 receptor clustering showing modulation between mitochondria-ER communications, together with the increase of mitochondrial biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

AMPK:

AMP-activated protein kinase

ER:

endoplasmic reticulum

MFN2:

mitofusin 2

AraC:

cytosine arabinoside

PBS:

phosphate-buffered saline

PBSCAM:

phosphate-buffered saline/calcium magnesium

BSA:

bovine serum albumin

DIV:

days in vitro

SEM:

standard error of the mean

IP3R:

inositol 1,4,5-trisphosphate receptor

OPA1:

optic atrophy 1

DRP1:

dynamin-related protein 1

PGC-1α:

peroxisome proliferator-activated receptor γ co-activator 1α

ROS:

reactive oxygen species

mΔΨ:

mitochondrial membrane potential

α-Btx:

alpha-bungarotoxin

DHβE:

dihydro-β-erythroidine hydrobromide

CTCF:

corrected total cell fluorescence

nAChR:

nicotinic acetylcholine receptor

α7-AChR:

alpha7-nicotinic acetylcholine receptor

ACh:

acetylcholine

AD:

Alzheimer’s disease

Wnt:

Wingless/integration site

ETC:

electron transport chain

mCx-I:

mitochondrial complex I

MFN2:

mitofusin2

mPTP:

mitochondrial permeability transition pore

Mdivi-1:

mitochondrial division inhibitor 1

NADH:

nicotinamide adenine dinucleotide

Mt-cyb:

cytochrome b

MTs:

microtubules

RyR:

ryanodine receptor

SERCA:

sarco/endoplasmic reticulum Ca+2-ATPase

MIRO:

mitochondrial rho GTPase

TOM 20:

translocase of outer mitochondrial membrane 20

VDAC:

voltage-dependent anion channel

References

  1. Dixit S, Fessel JP, Harrison FE (2017) Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer’s disease and a novel protective role for ascorbate. Free Radic Biol Med 112:515–523

    Article  CAS  Google Scholar 

  2. Area-Gomez E, Schon EA (2017) On the pathogenesis of Alzheimer’s disease: the MAM hypothesis. FASEB J 31(3):864–867

    Article  CAS  Google Scholar 

  3. Lin MY, Cheng XT, Xie Y, Cai Q, Sheng ZH (2017) Removing dysfunctional mitochondria from axons independent of mitophagy under pathophysiological conditions. Autophagy 13(10):1792–1794

    Article  CAS  Google Scholar 

  4. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  Google Scholar 

  5. Rehklau K, Hoffmann L, Gurniak CB, Ott M, Witke W, Scorrano L, Culmsee C, Rust MB (2017) Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death Dis 8(10):e3063

    Article  Google Scholar 

  6. Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282(4):647–672

    Article  CAS  Google Scholar 

  7. Lindholm D, Eriksson O, Mäkelä J, Belluardo N, Korhonen L (2012) PGC-1α: a master gene that is hard to master. Cell Mol Life Sci 69(15):2465–2468

    Article  CAS  Google Scholar 

  8. Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20(8):1863–1874

    Article  CAS  Google Scholar 

  9. Benard G, Karbowski M (2009) Mitochondrial fusion and division: regulation and role in cell viability. Semin Cell Dev Biol 20(3):365–374

    Article  CAS  Google Scholar 

  10. van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M, Wulf PS, Keijzer N et al (2013) TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77(3):485–502

    Article  Google Scholar 

  11. Wang X, Schwarz TL (2009) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136(1):163–174

    Article  CAS  Google Scholar 

  12. Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D et al (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61(4):541–555

    Article  CAS  Google Scholar 

  13. MacAskill AF, Kittler JT (2010) Control of mitochondrial transport and localization in neurons. Trends Cell Biol 20(2):102–112

    Article  CAS  Google Scholar 

  14. Godoy JA, Arrázola MS, Ordenes D, Silva-Alvarez C, Braidy N, Inestrosa NC (2014) Wnt-5a ligand modulates mitochondrial fission-fusion in rat hippocampal neurons. J Biol Chem 289(52):36179–36193

    Article  CAS  Google Scholar 

  15. Yi M, Weaver D, Hajnóczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167(4):661–672

    Article  CAS  Google Scholar 

  16. Paula-Lima AC, Adasme T, Hidalgo C (2014) Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 21(6):892–914

    Article  CAS  Google Scholar 

  17. Wonnacott S, Sidhpura N, Balfour DJ (2005) Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 5(1):53–59

    Article  CAS  Google Scholar 

  18. Ichino N, Ishiguro H, Yamada K, Nishii K, Sawada H, Nagatsu T (1999) Nicotine withdrawal up-regulates c-Fos transcription in pheochromocytoma cells. Neurosci Res 35:63–69

    Article  CAS  Google Scholar 

  19. Ichino N, Yamada K, Nishii K, Sawada H, Nagatsu T, Ishiguro H (2002) Increase of transcriptional levels of egr-1 and nur77 genes due to both nicotine treatment and withdrawal in pheochromocytoma cells. J Neural Transm 109:1015–1022

    Article  CAS  Google Scholar 

  20. Shim I, Javaid JI, Wirtshafter D, Jang SY, Shin KH, Lee HJ, Chung YC, Chun BG (2001) Nicotine-induced behavioral sensitization is associated with extracellular dopamine release and expression of c-Fos in the striatum and nucleus accumbens of the rat. Behav Brain Res 121(1–2):137–147

    Article  CAS  Google Scholar 

  21. Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signaling. Trends Pharmacol Sci 25:317–324

    Article  CAS  Google Scholar 

  22. Mizuno K, Kurokawa K, Ohkuma S (2015) Nicotinic acetylcholine receptors regulate type 1 inositol 1,4,5-trisphosphate receptor expression via calmodulin kinase IV activation. J Neurosci Res 93(4):660–665

    Article  CAS  Google Scholar 

  23. Cormier A, Morin C, Zini R, Tillement JP, Lagrue G (2001) In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation. Brain Res 900:72–79

    Article  CAS  Google Scholar 

  24. Wang J, Kim JM, Donovan DM, Becker KG, Li MD (2009) Significant modulation of mitochondrial electron transport system by nicotine in various rat brain regions. Mitochondrion 9:186–195

    Article  Google Scholar 

  25. Gergalova G, Lykhmus O, Kalashnyk O, Koval L, Chernyshov V, Kryukova E, Tsetlin V, Komisarenko S et al (2012) Mitochondria express alpha7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS One 7:e31361

    Article  CAS  Google Scholar 

  26. Kalashnyk OM, Gergalova GL, Komisarenko SV, Skok MV (2012) Intracellular localization of nicotinic acetylcholine receptors in human cell lines. Life Sci 91:1033–1037

    Article  CAS  Google Scholar 

  27. Lykhmus O, Gergalova G, Koval L, Zhmak M, Komisarenko S, Skok M (2014) Mitochondria express several nicotinic acetylcholine receptor subtypes to control various pathways of apoptosis induction. Int J Biochem Cell Biol 53:246–252

    Article  CAS  Google Scholar 

  28. Zolezzi JM, Silva-Alvarez C, Ordenes D, Godoy JA, Carvajal FJ, Santos MJ, Inestrosa NC (2013) Peroxisome proliferator-activated receptor (PPAR) γ and PPARα agonists modulate mitochondrial fusion-fission dynamics: relevance to reactive oxygen species (ROS)-related neurodegenerative disorders? PLoS One 8:e64019

    Article  CAS  Google Scholar 

  29. Quintanilla RA, Jin YN, von Bernhardi R, Johnson GV (2013) Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol Neurodegener 8:45

    Article  Google Scholar 

  30. McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13(9):1400–1412

    Article  CAS  Google Scholar 

  31. Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN (2014) Evaluating strategies to normalize biological replicates of Western blot data. PLoS One 9(1):e87293

    Article  Google Scholar 

  32. Sheng ZH (2014) Mitochondrial trafficking and anchoring in neurons: new insight and implications. J Cell Biol 204(7):1087–1098

    Article  CAS  Google Scholar 

  33. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120

    Article  CAS  Google Scholar 

  34. Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188

    Article  CAS  Google Scholar 

  35. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292(2):C670–C686

    Article  CAS  Google Scholar 

  36. Parihar MS, Brewer GJ (2007) Mitoenergetic failure in Alzheimer disease. Am J Physiol Cell Physiol 292(1):C8–C23

    Article  CAS  Google Scholar 

  37. Wilson TJ, Slupe AM, Strack S (2013) Cell signaling and mitochondrial dynamics: implications for neuronal function and neurodegenerative disease. Neurobiol Dis 51:13–26

    Article  CAS  Google Scholar 

  38. Bustamante J, Lores-Arnaiz S, Tallis S, Roselló DM, Lago N, Lemberg A, Boveris A, Perazzo JC (2011) Mitochondrial dysfunction as a mediator of hippocampal apoptosis in a model of hepatic encephalopathy. Mol Cell Biochem 354(1–2):231–240

    Article  CAS  Google Scholar 

  39. Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson's disease. Front Aging Neurosci 2. https://doi.org/10.3389/fnagi.2010.00034

  40. Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11(1):11–24

    Article  Google Scholar 

  41. Terasaki M, Chen LB, Fujiwara K (1986) Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103:1557–1568

    Article  CAS  Google Scholar 

  42. Barlan K, Gelfand VI (2010) Intracellular transport: ER and mitochondria meet and greet along designated tracks. Curr Biol 20(19):R845–R847

    Article  CAS  Google Scholar 

  43. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190:363–375

    Article  CAS  Google Scholar 

  44. Perdiz D, Lorin S, Leroy-Gori I, Poüs C (2017) Stress-induced hyperacetylation of microtubule enhances mitochondrial fission and modulates the phosphorylation of Drp1 at 616Ser. Cell Signal 39:32–43

    Article  CAS  Google Scholar 

  45. Kasri NN, Holmes AM, Bultynck G, Parys JB, Bootman MD, Rietdorf K, Missiaen L, McDonald F et al (2004) Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23(2):312–321

    Article  CAS  Google Scholar 

  46. Brough D, Schell MJ, Irvine RF (2005) Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. Biochem J 392(Pt 2):291–297

    Article  CAS  Google Scholar 

  47. Rowland AA, Voeltz GK (2012) Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 13(10):607–625

    Article  CAS  Google Scholar 

  48. English AR, Voeltz GK (2013) Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 5(4):a013227

    Article  Google Scholar 

  49. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32:235–249

    Article  CAS  Google Scholar 

  50. Losón OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24(5):659–667

    Article  Google Scholar 

  51. Singh S, Sharma S (2017) Dynamin-related protein-1 as potential therapeutic target in various diseases. Inflammopharmacology 25(4):383–392

    Article  CAS  Google Scholar 

  52. Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W, Yoon Y, Tian R et al (2016) CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 7:13189

    Article  CAS  Google Scholar 

  53. Chin ER (2004) The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc Nutr Soc 63(2):279–286

    Article  CAS  Google Scholar 

  54. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G et al (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183

    Article  CAS  Google Scholar 

  55. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  Google Scholar 

  56. Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A (2009) PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem 284(32):21379–21385

    Article  CAS  Google Scholar 

  57. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  Google Scholar 

  58. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106(7):847–856

    Article  CAS  Google Scholar 

  59. Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622

    Article  CAS  Google Scholar 

  60. Martínez-Redondo V, Pettersson AT, Ruas JL (2015) The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58(9):1969–1977

    Article  Google Scholar 

  61. Xie YX, Bezard E, Zhao BL (2005) Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J Biol Chem 280(37):32405–32412

    Article  CAS  Google Scholar 

  62. Halff AW, Gómez-Varela D, John D, Berg DK (2014) A novel mechanism for nicotinic potentiation of glutamatergic synapses. J Neurosci 34(6):2051–2064

    Article  CAS  Google Scholar 

  63. Lozada AF, Wang X, Gounko NV, Massey KA, Duan J, Liu Z, Berg DK (2012) Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors. J Neurosci 32(22):7651–7661

    Article  CAS  Google Scholar 

  64. Gao M, Jin Y, Yang K, Zhang D, Lukas RJ, Wu J (2010) Mechanisms involved in systemic nicotine-induced glutamatergic synaptic plasticity on dopamine neurons in the ventral tegmental area. J Neurosci 30(41):13814–13825

    Article  CAS  Google Scholar 

  65. Wang X, Lippi G, Carlson DM, Berg DK (2013) Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses. J Neurochem 127(5):632–643

    Article  CAS  Google Scholar 

  66. Area-Gomez E, de Groof A, Bonilla E, Montesinos J, Tanji K, Boldogh I, Pon L, Schon EA (2018) A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 9(3):335

    Article  Google Scholar 

  67. Bernard-Marissal N, Chrast R, Schneider BL (2018) Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship? Cell Death Dis 9(3):333

    Article  Google Scholar 

Download references

Funding

This work was supported by grants AFB 170005 and CONICYT-PFB 12/2007 from the Basal Centre for Excellence in Science and Technology (CARE UC) and FONDECYT 1160724, both to NCI. JAG is a PhD student at Universitat Pompeu Fabra, Barcelona, Spain. AGV was supported by a Santander Río Ibero-American fellowship through UC and PICT-2015-1031 from the National Scientific and Technical Research Council of Argentina (CONICET).

Author information

Authors and Affiliations

Authors

Contributions

JAG conceived and conducted most of the experiments with mitochondria, analyzed the results and wrote most of the article. AGV conducted the western blot experiments, analyzed the results and wrote the article. NCI conceived the general idea for the project and wrote the article.

Corresponding author

Correspondence to Nibaldo C. Inestrosa.

Ethics declarations

Conflict of Interest

All authors declare no conflicts of interest related to the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godoy, J.A., Valdivieso, A.G. & Inestrosa, N.C. Nicotine Modulates Mitochondrial Dynamics in Hippocampal Neurons. Mol Neurobiol 55, 8965–8977 (2018). https://doi.org/10.1007/s12035-018-1034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1034-8

Keywords

Navigation