Skip to main content
Log in

Location and Number of Astrocytes Determine Dopaminergic Neuron Survival and Function Under 6-OHDA Stress Mediated Through Differential BDNF Release

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

While astrocytes throughout the CNS share many common traits, they exhibit significant differences in function and number among brain regions. The aim of the present study is to assess the effect of region-specificity and number of astrocytes on the survival of dopaminergic neurons under stress, and to understand the possible mechanism by which these astrocytes extend neuroprotection to dopaminergic neurons. Purified astrocytes obtained from forebrain, midbrain, and hindbrain region were characterized through FACS and immunofluorescence. Co-culture experiments (using trans-wells) were then performed to measure the effect of region-specificities and numbers of astrocytes on primary midbrain culture under 6-OHDA stress. Cell survival augmented with an increase in astrocyte seeding number and total cell survival was comparable among the different region-specific astrocytes for all numbers. However, striking differences were observed in dopaminergic neuronal (TH) cell survival in the presence of midbrain astrocytes in comparison to forebrain and hindbrain astrocytes at all seeding numbers. At 75 μM 6-OHDA insult, while cell survival was comparable in purified astrocytes from the different brain regions, a distinct increase in BDNF secretion (significantly higher than its constitutive release) was noted for midbrain astrocytes compared to forebrain and hindbrain astrocytes. The TH immunopositive population decreased when TrkB inhibitor was added to the co-culture under 6-OHDA toxicity, suggesting that BDNF released by co-cultured astrocytes plays a key role in the survival of dopaminergic neurons. This BDNF release decreased in presence of NO inhibitor and increased in the presence of NO donor (DETA/NO). We conclude that the BDNF released from astrocytes under 6-OHDA toxicity is mediated through NO release through both autocrine and paracrine signaling, and this BDNF release is primarily responsible for the differential effect of region-specific astrocytes on TH neuron survival under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu B, Teschemacher AG, Kasparov S (2017) Neuroprotective potential of astroglia. J Neurosci Res. https://doi.org/10.1002/jnr.24140

  2. Ota Y, Zanetti AT, Hallock RM (2013) The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast 2013:185463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Aschner M, Syversen T, Souza DO, Rocha JBT, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40(3):285–291

    Article  PubMed  CAS  Google Scholar 

  4. Mehta B, Begum G, Joshi NB, Joshi PG (2008) Nitric oxide-mediated modulation of synaptic activity by astrocytic P2Y receptors. J Gen Physiol 132(3):339–349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gupta S, Goswami P, Biswas J, Joshi N, Sharma S, Nath C, Singh S (2015) 6-Hydroxydopamine and lipopolysaccharides induced DNA damage in astrocytes: involvement of nitric oxide and mitochondria. Mutat Res Genet Toxicol Environ Mutagen 778:22–36

    Article  PubMed  CAS  Google Scholar 

  6. Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM (2010) Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 276:85–94

    Article  PubMed  CAS  Google Scholar 

  7. Lian XY, Stringer JL (2004) Astrocytes contribute to regulation of extracellular calcium and potassium in the rat cerebral cortex during spreading depression. Brain Res 1012(25):177–184

    Article  PubMed  CAS  Google Scholar 

  8. Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A, Murnen AT et al (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337(6092):358–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Garcia-Abreu J, Moura NV, Carvalho SL, Cavalcante LA (1995) Regionally specific properties of midbrain glia: interactions with midbrain neurons. J Neurosci Res 40:417–477

    Article  Google Scholar 

  10. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, Barres BA, Rowitch DH (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    Article  PubMed  CAS  Google Scholar 

  12. García-Marqués J, De Carlos JA, Greer CA, López-Mascaraque L (2010) 2010. Different astroglia permissivity controls the migration of olfactory bulb interneuron precursors. Glia 58(2):218–230

    Article  PubMed  Google Scholar 

  13. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  PubMed  CAS  Google Scholar 

  14. Mena MA, de Bernardo S, Casarejos MJ, Canals S, Rodriguez-Martin E (2002) The role of astroglia on the survival of dopamine neurons. Mol Neurobiol 25:245–263

    Article  PubMed  CAS  Google Scholar 

  15. Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202(1–2):13–23

    Article  PubMed  CAS  Google Scholar 

  16. Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565(17):23–29

    Article  PubMed  CAS  Google Scholar 

  17. Olude MA, Mustapha OA, Aderounmu OA, Olopade JO, Ihunwo AO (2015) Astrocyte morphology, heterogeneity, and density in the developing African giant rat (Cricetomys gambianus). Front Neuroanat 9:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Savchenko VL, Nikonenko IR, Skibo GG, McKanna JA (1997) Distribution of microglia and astrocytes in different regions of the normal adult rat brain. Neurophysiology 29:343–351

    Article  Google Scholar 

  19. Blomstrand F, Giaume C, Hansson E, Ronnback L (1999) Distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca2+ signaling. Am J Phys 277:C616–C627

    Article  CAS  Google Scholar 

  20. Bordey A, Sontheimer H (2000) Ion channel expression by astrocytes in situ: comparison of different CNS regions. Glia 30(1):27–38

    Article  PubMed  CAS  Google Scholar 

  21. Saab AS et al (2012) Bergmann glial AMPA receptors are required for fine motor coordination. Science 337:749–753

    Article  PubMed  CAS  Google Scholar 

  22. Shinoda H, Marini AM, Cosi C, Schwartz JP (1989) Brain region and gene specificity of neuropeptide gene expression in cultured astrocytes. Science 245:415–417

    Article  PubMed  CAS  Google Scholar 

  23. Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28:5207–5217

    Article  PubMed  CAS  Google Scholar 

  24. Bernaudin M, Nouvelot A, MacKenzie ET, Petit E (1998) Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia. Exp Neurol 150:30–39

    Article  PubMed  CAS  Google Scholar 

  25. Xu L, Sapolsky RM, Giffard RG (2001) Differential sensitivity of murine astrocytes and neurons from different brain regions to injury. Exp Neurol 169:416–424

    Article  PubMed  CAS  Google Scholar 

  26. Zhao G, Flavin MP (2000) Differential sensitivity of rat hippocampal and cortical astrocytes to oxygen-glucose deprivation injury. Neurosci Lett 285:177–180

    Article  PubMed  CAS  Google Scholar 

  27. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Van Damme P, Bogaert E, Dewil M, Hersmus N, Kiraly D, Scheveneels W, Bockx I, Braeken D et al (2007) Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc Natl Acad Sci U S A 104(37):14825–14830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, Cleveland DW, Goldstein LSB (2008) Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. PNAS 105:7594–7599

    Article  PubMed  PubMed Central  Google Scholar 

  30. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  31. Fu Y, Paxinos G, Watson C, Halliday GM (2016) The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration. J Chem Neuroanat S0891-0618(16):30011–30014

    Google Scholar 

  32. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt. 5):2283–2301

    Article  PubMed  Google Scholar 

  33. Rappold PM, Tieu K (2010) Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 4:413–423

    Article  CAS  Google Scholar 

  34. Vergun O, Keelan J, Khodorov BI, Duchen MR (1999) Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J Physiol 519(Pt 2):451–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schildge S, Bohrer C, Beck K, Schachtrup C (2013) Isolation and culture of mouse cortical astrocytes. J Vis Exp JoVE 71:50079

    Google Scholar 

  36. Ganapathy K, Sowmithra S, Bhonde R, Datta I (2016) By changing dimensionality, sequential culturing of midbrain cells, rather than two-dimensional culture, generates a neuron-glia ratio closer to in vivo adult midbrain. Cells Tissues Organs 201:445–463

    Article  PubMed  CAS  Google Scholar 

  37. Ganapathy K, Datta I, Sowmithra S, Joshi P, Bhonde R (2016) Influence of 6-hydroxydopamine toxicity on α-synuclein phosphorylation, resting vesicle expression, and vesicular dopamine release. J Cell Biochem 9999:1–18

    Google Scholar 

  38. Prasanna SJ, Saha B, Nandi D (2007) Involvement of oxidative and nitrosative stress in modulation of gene expression and functional responses by IFNγ. Int Immunol 19(7):867–879

    Article  PubMed  CAS  Google Scholar 

  39. Cheng A, Wang S, Cai J, Rao MS, Mattson MP (2003) Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev Biol 258:319–333

    Article  PubMed  CAS  Google Scholar 

  40. Hsieh H, Robertson CL, Vermehren-Schmaedick A, Balkowiec A (2010) Nitric oxide regulates BDNF release from nodose ganglion neurons in a pattern-dependent and cGMP-independent manner. J Neurosci Res 88(6):1285–1297

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Double KL, Reyes S, Werry EL, Halliday GM (2010) Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions? Prog Neurobiol 92:316–329

    Article  PubMed  CAS  Google Scholar 

  42. Double KL (2012) Neuronal vulnerability in Parkinson’s disease. Parkinsonism Relat Disord 18:S52–S54

    Article  PubMed  Google Scholar 

  43. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12

    PubMed  PubMed Central  Google Scholar 

  44. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  PubMed  CAS  Google Scholar 

  45. Ouyang YB, Xu L, Liu S, Giffard RG (2014) Role of astrocytes in delayed neuronal death: GLT-1 and its novel regulation by microRNAs. Adv Neurobiol 11:171–188

    Article  PubMed  PubMed Central  Google Scholar 

  46. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  PubMed  CAS  Google Scholar 

  47. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232

    Article  PubMed  CAS  Google Scholar 

  48. Feng L, Wang CY, Jiang H, Oho C, Mizuno K, Dugich-Djordjevic M, Lu B (1999) Differential effects of GDNF and BDNF on cultured ventral mesencephalic neurons. Brain Res Mol Brain Res 66:62–70

    Article  PubMed  CAS  Google Scholar 

  49. Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25(26):6251–6259

    Article  PubMed  CAS  Google Scholar 

  50. Baydyuk M, Xu B (2014) BDNF signaling and survival of striatal neurons. Front Cell Neurosci 8:254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci: Off J Soc Neurosci 29(41):12764–12767

    Article  CAS  Google Scholar 

  52. Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323

    Article  PubMed  Google Scholar 

  53. Ikeda H, Murase K (2004) Glial nitric oxide-mediated long-term presynaptic facilitation revealed by optical imaging in rat spinal dorsal horn. J Neurosci 24:9888–9896

    Article  PubMed  CAS  Google Scholar 

  54. Buskila Y, Amitai Y (2010) Astrocytic iNOS-dependent enhancement of synaptic release in mouse neocortex. J Neurophysiol 103:1322–1328

    Article  PubMed  CAS  Google Scholar 

  55. Xie AX, Petravicz J, McCarthy KD (2015) Molecular approaches for manipulating astrocytic signaling in vivo front. Cell Neurosci 9:144

    Google Scholar 

Download references

Funding

This work is supported by the “Innovative Young Biotechnologist Award” achieved by I.D. from the Department of Biotechnology (DBT), Government of India, New Delhi; contract grant no. BT/07/IYBA/2013-7. K.G. is funded by Manipal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Datta.

Ethics declarations

Conflict of Interest

The authors have declared that no competing interests exist.

Electronic Supplementary Material

Supplementary Fig. 1

Representative FACS histograms showing the percentage immunopositive β-tubulin III neuronal population, GFAP astrocyte population, and TH dopaminergic neuronal population in primary MB culture in control and 6-OHDA-treated conditions. (GIF 102 kb)

High resolution image (TIFF 273 kb)

Supplementary Fig. 2

Representative dot plots of FACS analysis for annexin V/PI staining showing percentage of live cells, necrotic cells, early and late apoptotic cells in primary MB cells co-cultured with different numbers of astrocytes from three regions of the brain. (GIF 153 kb)

High resolution image (TIFF 480 kb)

Supplementary Fig. 3

Characteristic FACS analysis of GFAP, β-tubulin III, and TH immunopositive population in primary MB culture under 6-OHDA stress and co-cultured with astrocytes (80,000) from three regions of the brain. (GIF 133 kb)

High resolution image (TIFF 337 kb)

Supplementary Fig. 4

Representative FACS analysis of population immunopositive for VMAT2, α-synuclein (αSyn) and phosphorylated α-synuclein serine129 (pSyn) in primary MB cells co-cultured with 80,000 MB astrocytes under 6-OHDA stress with respect to primary MB culture in control and 6-OHDA-treated conditions. (GIF 148 kb)

High resolution image (TIFF 451 kb)

Supplementary Fig. 5

Characteristic FACS histograms of the percentage immunopositive GFAP, TH, and β-tubulin III in primary MB cells co-cultured with midbrain astrocytes at the number of 80,000 under 6-OHDA stress with and without the TrkB inhibitor (ANA12) to demonstrate the effect of BDNF on the survival of dopaminergic neurons in primary MB culture. (GIF 185 kb)

High resolution image (TIFF 434 kb)

Supplementary Fig. 6

Representative FACS histogram of population immunopositive for TH in primary midbrain cells co-cultured with 80,000 astrocytes from FB, MB, and HB. (GIF 138 kb)

High resolution image (TIFF 311 kb)

Supplementary Fig. 7

Ethidium bromide-stained gel showing the expression of nNOS and iNOS in the FB, MB, and HB astrocytes under control and 6-OHDA stress. (GIF 43 kb)

High resolution image (TIFF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, I., Ganapathy, K., Razdan, R. et al. Location and Number of Astrocytes Determine Dopaminergic Neuron Survival and Function Under 6-OHDA Stress Mediated Through Differential BDNF Release. Mol Neurobiol 55, 5505–5525 (2018). https://doi.org/10.1007/s12035-017-0767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0767-0

Keywords

Navigation