Skip to main content
Log in

Social Isolation During Adolescence Induces Anxiety Behaviors and Enhances Firing Activity in BLA Pyramidal Neurons via mGluR5 Upregulation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Social isolation during the vulnerable period of adolescence contributes to the occurrence of psychiatric disorders and profoundly affects brain development and adult behavior. Although the impact of social isolation during adolescence on anxiety behaviors has been well studied, much less is known about the onset and underlying mechanisms of these behaviors. We observed that following 2 weeks, but not 1 week, of social isolation, adolescent mice exhibited anxiety behaviors. Strikingly, the mGluR5 protein levels in the amygdala increased concomitantly with anxiety behaviors, and both intraperitoneal administration and intra-basolateral amygdala (BLA) infusion of MPEP, a metabotropic glutamate receptor 5 antagonist, normalized anxiety behaviors. Furthermore, electrophysiological studies showed that 2 weeks of social isolation during adolescence facilitated pyramidal neuronal excitability in the BLA, which could be normalized by MPEP. Together, these results reveal a critical period in adolescence during which social isolation can induce anxiety behaviors and facilitate BLA pyramidal neuronal excitability, both of which are mediated by mGluR5, thus providing mechanistic insights into the onset of anxiety behaviors after social isolation during adolescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Craske MG, Stein MB (2016) Anxiety. Lancet 388(10063):3048–3059

    Article  PubMed  Google Scholar 

  2. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):593–602

    Article  PubMed  Google Scholar 

  3. Hettema JM, Prescott CA, Myers JM, Neale MC, Kendler KS (2005) The structure of genetic and environmental risk factors for anxiety disorders in men and women. Arch Gen Psychiatry 62(2):182–189

    Article  PubMed  Google Scholar 

  4. Moreno-Peral P, Conejo-Ceron S, Motrico E, Rodriguez-Morejon A, Fernandez A, Garcia-Campayo J, Roca M, Serrano-Blanco A et al (2014) Risk factors for the onset of panic and generalised anxiety disorders in the general adult population: a systematic review of cohort studies. J Affect Disord 168:337–348

    Article  PubMed  Google Scholar 

  5. Levine A, Worrell TR, Zimnisky R, Schmauss C (2012) Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol Dis 45(1):488–498

    Article  CAS  PubMed  Google Scholar 

  6. Liu JH, You QL, Wei MD, Wang Q, Luo ZY, Lin S, Huang L, Li SJ et al (2015) Social isolation during adolescence strengthens retention of fear memories and facilitates induction of late-phase long-term potentiation. Mol Neurobiol 52(3):1421–1429

    Article  CAS  PubMed  Google Scholar 

  7. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  8. Li DP, Zhu LH, Pachuau J, Lee HA, Pan HL (2014) mGluR5 Upregulation increases excitability of hypothalamic presympathetic neurons through NMDA receptor trafficking in spontaneously hypertensive rats. J Neurosci 34(12):4309–4317

    Article  PubMed  Google Scholar 

  9. Jia Z, Lu Y, Henderson J, Taverna F, Romano C, Abramow-Newerly W, Wojtowicz JM, Roder J (1998) Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. Learn Mem 5(4–5):331–343

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Alagarsamy S, Marino MJ, Rouse ST, Gereau RW, Heinemann SF, Conn PJ (1999) Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 2(3):234–240

    Article  CAS  PubMed  Google Scholar 

  11. Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, Corsi M, Orzi F et al (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4(9):873–874

    Article  CAS  PubMed  Google Scholar 

  12. Shin S, Kwon O, Kang JI, Kwon S, Oh S, Choi J, Kim CH, Kim DG (2015) mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nat Neurosci 18(7):1017–1024

    Article  CAS  PubMed  Google Scholar 

  13. Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Palucha A, Gasparini F, Kuhn R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132(7):1423–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spooren WP, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, Gentsch C (2000) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295(3):1267–1275

    CAS  PubMed  Google Scholar 

  15. Hajizadeh Moghaddam A, Roohbakhsh A, Rostami P, Heidary-Davishani A, Zarrindast MR (2008) GABA and histamine interaction in the basolateral amygdala of rats in the plus-maze test of anxiety-like behaviors. Pharmacology 82(1):59–66

    Article  CAS  PubMed  Google Scholar 

  16. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  17. Muller J, Corodimas KP, Fridel Z, LeDoux JE (1997) Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci 111(4):683–691

    Article  CAS  PubMed  Google Scholar 

  18. Bi LL, Sun XD, Zhang J, Lu YS, Chen YH, Wang J, Geng F, Liu F et al (2015) Amygdala NRG1-ErbB4 is critical for the modulation of anxiety-like behaviors. Neuropsychopharmacology 40(4):974–986

    Article  CAS  PubMed  Google Scholar 

  19. Long H, Liu B, Hou B, Wang C, Li J, Qin W, Wang D, Zhou Y et al (2013) The long rather than the short allele of 5-HTTLPR predisposes Han Chinese to anxiety and reduced connectivity between prefrontal cortex and amygdala. Neurosci Bull 29(1):4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER, Hirsch J (2004) Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 44(6):1043–1055

    Article  CAS  PubMed  Google Scholar 

  21. Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD (2009) Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry 66(12):1361–1372

    Article  PubMed  Google Scholar 

  22. Carlsen J (1988) Immunocytochemical localization of glutamate decarboxylase in the rat basolateral amygdaloid nucleus, with special reference to GABAergic innervation of amygdalostriatal projection neurons. J Comp Neurol 273(4):513–526

    Article  CAS  PubMed  Google Scholar 

  23. Smith Y, Pare D (1994) Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J Comp Neurol 342(2):232–248

    Article  CAS  PubMed  Google Scholar 

  24. Sajdyk TJ, Shekhar A (1997) Excitatory amino acid receptor antagonists block the cardiovascular and anxiety responses elicited by gamma-aminobutyric acidA receptor blockade in the basolateral amygdala of rats. J Pharmacol Exp Ther 283(2):969–977

    CAS  PubMed  Google Scholar 

  25. Sajdyk TJ, Shekhar A (1997) Excitatory amino acid receptors in the basolateral amygdala regulate anxiety responses in the social interaction test. Brain Res 764(1–2):262–264

    Article  CAS  PubMed  Google Scholar 

  26. Robinson OJ, Krimsky M, Lieberman L, Allen P, Vytal K, Grillon C (2014) Towards a mechanistic understanding of pathological anxiety: the dorsal medial prefrontal-amygdala ‘aversive amplification’ circuit in unmedicated generalized and social anxiety disorders. Lancet Psychiatry 1(4):294–302

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hilbert K, Lueken U, Beesdo-Baum K (2014) Neural structures, functioning and connectivity in generalized anxiety disorder and interaction with neuroendocrine systems: a systematic review. J Affect Disord 158:114–126

    Article  PubMed  Google Scholar 

  28. Zhu XH, Yan HC, Zhang J, Qu HD, Qiu XS, Chen L, Li SJ, Cao X et al (2010) Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 30(38):12653–12663

    Article  CAS  PubMed  Google Scholar 

  29. Anderson JJ, Bradbury MJ, Giracello DR, Chapman DF, Holtz G, Roppe J, King C, Cosford ND et al (2003) In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine. Eur J Pharmacol 473(1):35–40

    Article  CAS  PubMed  Google Scholar 

  30. Manzanares PAR, Isoardi NA, Carrer HF, Molina VA (2005) Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci 25(38):8725–8734

    Article  CAS  Google Scholar 

  31. Stern CA, Do Monte FH, Gazarini L, Carobrez AP, Bertoglio LJ (2010) Activity in prelimbic cortex is required for adjusting the anxiety response level during the elevated plus-maze retest. Neuroscience 170(1):214–222

    Article  CAS  PubMed  Google Scholar 

  32. Chen YJ, Zhang M, Yin DM, Wen L, Ting A, Wang P, Lu YS, Zhu XH et al (2010) ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci U S A 107(50):21818–21823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weiss IC, Pryce CR, Jongen-Relo AL, Nanz-Bahr NI, Feldon J (2004) Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behav Brain Res 152(2):279–295

    Article  CAS  PubMed  Google Scholar 

  34. Wright IK, Upton N, Marsden CA (1991) Resocialisation of isolation-reared rats does not alter their anxiogenic profile on the elevated X-maze model of anxiety. Physiol Behav 50(6):1129–1132

    Article  CAS  PubMed  Google Scholar 

  35. Parker V, Morinan A (1986) The socially-isolated rat as a model for anxiety. Neuropharmacology 25:663–664

    Article  Google Scholar 

  36. Carola V, D'Olimpio F, Brunamonti E, Mangia F, Renzi P (2002) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res 134(1–2):49–57

    Article  PubMed  Google Scholar 

  37. Paterson NE, Iwunze M, Davis SF, Malekiani SA, Hanania T (2010) Comparison of the predictive validity of the mirror chamber and elevated plus maze tests in mice. J Neurosci Methods 188(1):62–70

    Article  PubMed  Google Scholar 

  38. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, Thompson KR, Gradinaru V et al (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471(7338):358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rau AR, Chappell AM, Butler TR, Ariwodola OJ, Weiner JL (2015) Increased basolateral amygdala pyramidal cell excitability may contribute to the anxiogenic phenotype induced by chronic early-life stress. J Neurosci 35(26):9730–9740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34(1):1–26

    Article  CAS  PubMed  Google Scholar 

  41. Chung W, Choi SY, Lee E, Park H, Kang J, Park H, Choi Y, Lee D et al (2015) Social deficits in IRSp53 mutant mice improved by NMDAR and mGluR5 suppression. Nat Neurosci 18(3):435–443

    Article  CAS  PubMed  Google Scholar 

  42. Gutman DA, Nemeroff CB (2003) Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiol Behav 79(3):471–478

    Article  CAS  PubMed  Google Scholar 

  43. Lapiz MD, Fulford A, Muchimapura S, Mason R, Parker T, Marsden CA (2001) Influence of postweaning social isolation in the rat on brain development, conditioned behaviour and neurotransmission. Ross Fiziol Zh Im I M Sechenova 87(6):730–751

    CAS  PubMed  Google Scholar 

  44. Kim CH, Lee J, Lee JY, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86(1):1–10

    Article  CAS  PubMed  Google Scholar 

  45. Brodkin J, Busse C, Sukoff SJ, Varney MA (2002) Anxiolytic-like activity of the mGluR5 antagonist MPEP: a comparison with diazepam and buspirone. Pharmacol Biochem Behav 73(2):359–366

    Article  CAS  PubMed  Google Scholar 

  46. Busse CS, Brodkin J, Tattersall D, Anderson JJ, Warren N, Tehrani L, Bristow LJ, Varney MA et al (2004) The behavioral profile of the potent and selective mGlu5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) in rodent models of anxiety. Neuropsychopharmacology 29(11):1971–1979

    Article  CAS  PubMed  Google Scholar 

  47. Roppe JR, Wang B, Huang D, Tehrani L, Kamenecka T, Schweiger EJ, Anderson JJ, Brodkin J et al (2004) 5-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-2,3′-bipyridine: a highly potent, orally active metabotropic glutamate subtype 5 (mGlu5) receptor antagonist with anxiolytic activity. Bioorg Med Chem Lett 14(15):3993–3996

    Article  CAS  PubMed  Google Scholar 

  48. Pietraszek M, Sukhanov I, Maciejak P, Szyndler J, Gravius A, Wislowska A, Plaznik A, Bespalov AY et al (2005) Anxiolytic-like effects of mGlu1 and mGlu5 receptor antagonists in rats. Eur J Pharmacol 514(1):25–34

    Article  CAS  PubMed  Google Scholar 

  49. Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, Holden SS, Mertens KL et al (2015) A circuit mechanism for differentiating positive and negative associations. Nature 520(7549):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hermans E, Challiss RA (2001) Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359(Pt 3):465–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dhami GK, Ferguson SS (2006) Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther 111(1):260–271

    Article  CAS  PubMed  Google Scholar 

  52. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerber U, Gähwiler BH (1994) Modulation of ionic currents by metabotropic glutamate receptors in the CNS. Metabotropic Glutamate Receptors Humana Press:125–146

  54. Anwyl R (2009) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Rev Neurosci 29:83–120

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81329003, 81671356, 31430032), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R37), and Guangzhou Science and Technology Project (201707020027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ming Yang or Tian-Ming Gao.

Electronic Supplementary Material

Supplementary Figure 1

Effect of intra-BLA infusion of MPEP on anxiety-like behavior in normal mice. (a) Schematic of anxiety behaviors tested 30 min after MPEP administration. (b and c) In the EPM test, intra-BLA infusion of 2 and 20 μM MPEP had no effect on anxiety-like behaviors. Vehicle, n = 10; MPEP (2 μM), n = 9; MPEP (20 μM), n = 9; (d-f) In the OFT, intra-BLA infusion of 2 and 20 μM MPEP had no effect on anxiety-like behaviors. Vehicle, n = 10; MPEP (2 μM), n = 9; MPEP (20 μM), n = 9. NS, not significant; One-way ANOVA. Error bars indicate the SEM. (GIF 34 kb)

High resolution image (TIFF 940 kb)

Supplementary Figure 2

Two-week social isolation increased input resistance of pyramidal neurons in BLA. (a-c) RMP, spike threshold and input resistance in BLA pyramidal neurons from GH mice and 2w SI mice (n = 8, 3 GH mice; n = 7, 3 2w SI mice). *P < 0.05; NS, not significant; Student’s t test; Error bars indicate the SEM. (GIF 15 kb)

High resolution image (TIFF 357 kb)

Supplementary Figure 3

One-week social isolation did not affect the firing activity of pyramidal neurons in BLA. (a) Representative traces of AP evoked by injecting depolarizing current of 120 pA from GH mice and 1w SI mice. Scale bars: 200 ms, 40 pA. (b) Number of AP against injected current (n = 10, 3 GH mice; n = 11, 3 1w SI mice). (c) Representative traces of AP in response to depolarizing current ramps. (d) Cumulative AP latency for GH and 1w SI. (e) Average number of AP during current ramp application (n = 10, 3 GH mice; n = 11, 3 1w SI mice). (f-h) RMP, spike threshold and input resistance in BLA pyramidal neurons from GH mice and 1w SI mice (n = 10, 3 GH mice; n = 11, 3 1w SI mice). NS, not significant; Two-way ANOVA test for (b, d); Student’s t tests for (e-h). Error bars indicate the SEM. (GIF 33 kb)

High resolution image (TIFF 1189 kb)

Supplementary Figure 4

MPEP normalized the change of input resistance after two-week social isolation during adolescence. (a-c) spike threshold, RMP and input resistance in BLA pyramidal neurons from GH mice and 2w SI + MPEP mice (n = 10 per group from 4 mice). NS, not significant; Student’s t test; Error bars indicate the SEM. (GIF 17 kb)

High resolution image (TIFF 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Li, X., Chen, YH. et al. Social Isolation During Adolescence Induces Anxiety Behaviors and Enhances Firing Activity in BLA Pyramidal Neurons via mGluR5 Upregulation. Mol Neurobiol 55, 5310–5320 (2018). https://doi.org/10.1007/s12035-017-0766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0766-1

Keywords

Navigation