Skip to main content
Log in

Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Schizophrenia is a devastating mental disease with social deficit as its core component of negative symptoms, which could be induced in rodents by dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist. NMDA receptors are highly expressed during the postnatal period. However, less attention has been paid to the effects of postnatal MK-801 administration on social interaction. In this study, we evaluated the effects of postnatal administration of MK-801 on social interaction and explored the possible mechanisms. Postnatal day-7 mice were intraperitoneally injected with MK-801 twice daily for 5 days, and their social interaction repertoire was monitored by a computerized video in the 10th week. The contact event, relative position event, stop-state, and dynamic event were analyzed with MiceProfiler automatic idTracker system. The results showed that MK-801 reduced the number of the contact events, relative position events, and stop-states, while increased the number and duration of dynamic events. These changes implied that MK-801-injected mice had indifference and lower motivation in social interaction and could be a useful model for studies on the social deficit of schizophrenia. The prefrontal cortex is the key region for social interaction behaviors. Slice patch clamp was performed to analyze the cellular excitability of prefrontal cortical neurons after postnatal treatment with MK-801 in mice. The results demonstrated that MK-801 injection reduced the frequency and amplitude of action potentials, but increased the frequency of miniature inhibitory postsynaptic currents. These data illustrated that the excitability of neurons in the prefrontal cortex was inhibited. Finally, immunoblotting data demonstrated that MK-801 significantly decreased the levels of sirtuin 1 (SIRT1) and phosphorylated protein kinase B (p-PKB) in the prefrontal cortex (both P < 0.05). Taken together, our results indicated that administration of MK-801 to postnatal mice induces social interaction deficits possibly due to inhibiting the neuronal excitability and decreasing the levels of SIRT1 and p-PKB in the prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MK-801:

Dizocilpine

SIRT1:

Sirtuin 1

mIPSC:

Miniature inhibitory postsynaptic currents

TTX:

Tetrodotoxin

p-PKB:

Phosphorylated protein kinase B

p-mTOR:

Phosphorylated mechanistic target of rapamycin (serine/threonine kinase)

References

  1. Sarkar S, Grover S (2013) Antipsychotics in children and adolescents with schizophrenia: a systematic review and meta-analysis. Indian J Pharmacol 45(5):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rajji TK, Miranda D, Mulsant BH (2014) Cognition, function, and disability in patients with schizophrenia: a review of longitudinal studies. Can J Psychiatr 59(1):13–17

    Article  Google Scholar 

  3. Kempton MJ, Stahl D, Williams SC, DeLisi LE (2010) Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr Res 120(1–3):54–62

    Article  PubMed  Google Scholar 

  4. Ono T, Hashimoto E, Ukai W, Ishii T, Saito T (2010) The role of neural stem cells for in vitro models of schizophrenia: neuroprotection via Akt/ERK signal regulation. Schizophr Res 122(1–3):239–247

    Article  PubMed  Google Scholar 

  5. Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L et al (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128(3):419–432

    Article  CAS  PubMed  Google Scholar 

  6. Lin CH, Lane HY, Tsai GE (2012) Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 100(4):665–677

    Article  CAS  PubMed  Google Scholar 

  7. Lim AL, Taylor DA, Malone DT (2012) Consequences of early life MK-801 administration: long-term behavioural effects and relevance to schizophrenia research. Behav Brain Res 227(1):276–286

    Article  CAS  PubMed  Google Scholar 

  8. Gururajan A, Taylor DA, Malone DT (2010) Current pharmacological models of social withdrawal in rats: relevance to schizophrenia. Behav Pharmacol 21(8):690–709

    Article  CAS  PubMed  Google Scholar 

  9. Moy SS, Nonneman RJ, Shafer GO, Nikolova VD, Riddick NV, Agster KL, Baker LK, Knapp DJ (2013) Disruption of social approach by MK-801, amphetamine, and fluoxetine in adolescent C57BL/6J mice. Neurotoxicol Teratol 36:36–46

    Article  CAS  PubMed  Google Scholar 

  10. Hanks AN, Dlugolenski K, Hughes ZA, Seymour PA, Majchrzak MJ (2013) Pharmacological disruption of mouse social approach behavior: relevance to negative symptoms of schizophrenia. Behav Brain Res 252:405–414

    Article  PubMed  Google Scholar 

  11. Kim SH, Park HG, Kim HS, Ahn YM, Kim YS (2010) Effects of neonatal MK-801 treatment on p70S6K-S6/eIF4B signal pathways and protein translation in the frontal cortex of the developing rat brain. Int J Neuropsychopharmacol 13(9):1233–1246

    Article  CAS  PubMed  Google Scholar 

  12. Rajkumar RP (2015) The impact of childhood adversity on the clinical features of schizophrenia. Schizophr Res Treatment 2015:532082

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chae S, Sim M, Lim M, Na J, Kim D (2015) Multivariate analysis of relationship between childhood trauma and psychotic symptoms in patients with schizophrenia. Psychiatry Investig 12(3):397–401

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rung JP, Carlsson A, Rydén Markinhuhta K, Carlsson ML (2005) (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 29(5):827–832

    Article  CAS  Google Scholar 

  15. Nozari M, Shabani M, Hadadi M, Atapour N (2014) Enriched environment prevents cognitive and motor deficits associated with postnatal MK-801 treatment. Psychopharmacology 231(22):4361–4470

    Article  CAS  PubMed  Google Scholar 

  16. Su YA, Huang RH, Wang XD, Li JT, Si TM (2014) Impaired working memory by repeated neonatal MK-801 treatment is ameliorated by galantamine in adult rats. Eur J Pharmacol 725:32–39

    Article  CAS  PubMed  Google Scholar 

  17. Lee E, Hong J, Park YG, Chae S, Kim Y, Kim D (2015) Left brain cortical activity modulates stress effects on social behavior. Sci Rep 5:13342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Chaumont F, Coura RD, Serreau P, Cressant A, Chabout J, Granon S, Olivo-Marin JC (2012) Computerized video analysis of social interactions in mice. Nat Methods 9(4):410–417

    Article  CAS  PubMed  Google Scholar 

  19. Yin H, Tully LM, Lincoln SH, Hooker CI (2015) Adults with high social anhedonia have altered neural connectivity with ventral lateral prefrontal cortex when processing positive social signals. Front Hum Neurosci 9:469

    PubMed  PubMed Central  Google Scholar 

  20. Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H (2011) Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334(6056):693–697

    Article  CAS  PubMed  Google Scholar 

  21. Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101(22):8467–8472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, Mirzabekov JJ et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157(7):1535–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang J, Fivecoat H, Ho L, Pan Y, Ling E, Pasinetti GM (2010) The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer's disease neuropathology. Biochim Biophys Acta 1804(8):1690–1694

    Article  CAS  PubMed  Google Scholar 

  24. Lalla R, Donmez G (2013) The role of sirtuins in Alzheimer's disease. Front Aging Neurosci 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang BL, Chua CE (2008) SIRT1 and neuronal diseases. Mol Asp Med 29(3):187–200

    Article  CAS  Google Scholar 

  26. Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, Mak G, Kim D et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kishi T, Fukuo Y, Kitajima T, Okochi T, Yamanouchi Y, Kinoshita Y, Kawashima K, Inada T et al (2011) SIRT1 gene, schizophrenia and bipolar disorder in the Japanese population: an association study. Genes Brain Behav 10(3):257–263

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Huang Y, Peng M, Cong Z, Li X, Lin A, Zhu G, Peng L et al (2015) Association between Silent Information Regulator 1 (SIRT1) gene polymorphisms and schizophrenia in a Chinese Han population. Psychiatry Res 225(3):744–745

    Article  CAS  PubMed  Google Scholar 

  29. Kenworthy CA, Sengupta A, Luz SM, Ver Hoeve ES, Meda K, Bhatnagar S, Abel T (2014) Social defeat induces changes in histone acetylation and expression of histone modifying enzymes in the ventral hippocampus, prefrontal cortex, and dorsal raphe nucleus. Neuroscience 264:88–98

    Article  CAS  PubMed  Google Scholar 

  30. Lei G, Xia Y, Johnson KM (2008) The role of Akt-GSK-3beta signaling and synaptic strength in phencyclidine-induced neurodegeneration. Neuropsychopharmacology 33(6):1343–1353

    Article  CAS  PubMed  Google Scholar 

  31. Meffre J, Chaumont-Dubel S, Mannoury la Cour C, Loiseau F, Watson DJ, Dekeyne A, Séveno M, Rivet JM et al (2012) 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia. EMBO Mol Med 4(10):1043–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holuj M, Popik P, Nikiforuk A (2015). Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors. Behav Pharmacol 26(8 Spec No):766–775

  33. Green MF, Horan WP, Lee J (2015) Social cognition in schizophrenia. Nat Rev Neurosci 16(10):620–631

    Article  CAS  PubMed  Google Scholar 

  34. Latysheva NV, Rayevsky KS (2003) Chronic neonatal N-methyl-D-aspartate receptor blockade induces learning deficits and transient hypoactivity in young rats. Prog Neuro-Psychopharmacol Biol Psychiatry 27(5):787–794

    Article  CAS  Google Scholar 

  35. Bicks LK, Koike H, Akbarian S, Morishita H (2015) Prefrontal cortex and social cognition in mouse and man. Front Psychol 6:1805

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jodo E, Suzuki Y, Katayama T, Hoshino KY, Takeuchi S, Niwa S, Kayama Y (2005) Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. Cereb Cortex 15(5):663–669

    Article  PubMed  Google Scholar 

  37. Barzilay R, Ben-Zur T, Sadan O, Bren Z, Taler M, Lev N, Tarasenko I, Uzan R et al (2011) Intracerebral adult stem cells transplantation increases brain-derived neurotrophic factor levels and protects against phencyclidine-induced social deficit in mice. Transl Psychiatry 1:e61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ et al (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50(3):377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishijima I, Yamagata T, Spencer CM, Weeber EJ, Alekseyenko O, Sweatt JD, Momoi MY, Ito M et al (2006) Secretin receptor-deficient mice exhibit impaired synaptic plasticity and social behavior. Hum Mol Genet 15(21):3241–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sato A, Kasai S, Kobayashi T, Takamatsu Y, Hino O, Ikeda K, Mizuguchi M (2012) Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat Commun 3:1292

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rapoport JL, Giedd JN, Gogtay N (2012) Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 17(12):1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants of National Natural Science Foundation of China (No. 81371471 and No. 81671320) and a grant of the Key Research and Development Program of Shandong Province (No.2016GSF201054). Especially, we thank the MiceProfiler software from Institut Pasteur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhao Sun.

Ethics declarations

All mice were used in accordance with the National Institutes of Health Guide for the care and use of laboratory animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Dexiao Zhu and Hui Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Wang, H., Wu, J. et al. Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler. Mol Neurobiol 54, 8152–8161 (2017). https://doi.org/10.1007/s12035-016-0291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0291-7

Keywords

Navigation