Skip to main content

Advertisement

Log in

Stem Cells in Neurotoxicology/Developmental Neurotoxicology: Current Scenario and Future Prospects

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stem cell biology has played a pivotal role in the field of disease modeling, regenerative medicine, and tissue engineering. The scope of stem cell research has been further extended to address the issues associated with toxicity and biosafety. However, its role in the field of neurotoxicity (NT) and the emerging field of developmental neurotoxicity (DNT) is somewhat underrepresented and needs thorough investigation. Several challenges have hindered the progress of NT and DNT studies, and there is a dire need for human-specific high-throughput in vitro system(s) as a tool with better predictivity, reliability, and reproducibility. The unique proliferation and pluripotency of stem cells makes them a tremendous resource for human material, allowing the prediction of drug toxicity and metabolic effects of chemicals. Recognizing the growing importance of NT and DNT and the application of stem cell biology, in this review article, we provide the diversified approaches of stem cell research which can be effectively applied to the NT and DNT studies and provide an update of the recent progress made so far. We further provide a futuristic approach towards novel stem cell-based strategies for NT and DNT testing. We have further discussed the current technologies, role of induced pluripotent stem cells, the application of three-dimensional (3D) cultures and role of stem cell-derived organs in the NT and DNT studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bosnjak ZJ (2012) Developmental neurotoxicity screening using human embryonic stem cells. Exp Neurol 237(1):207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costa LG, Giordano G, Guizzetti M, Vitalone A (2007) Neurotoxicity of pesticides: a brief review. Front Biosci 13:1240–1249

    Article  Google Scholar 

  3. Coecke S, Goldberg AM, Allen S, Buzanska L, Calamandrei G, Crofton K, Hareng L, Hartung T, Knaut H, Honegger P (2007) Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ Health Perspect 115(6):924–931

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kang K-S, Trosko JE (2011) Stem cells in toxicology: fundamental biology and practical considerations. Toxicol Sci 120(suppl 1):S269–S289

    Article  CAS  PubMed  Google Scholar 

  5. Laustriat D, Gide J, Peschanski M (2010) Human pluripotent stem cells in drug discovery and predictive toxicology. Biochem Soc Trans 38(4):1051

    Article  CAS  PubMed  Google Scholar 

  6. Betts KS (2010) Growing knowledge: using stem cells to study developmental neurotoxicity. Environ Health Perspect 118(10):A432

    Article  PubMed  PubMed Central  Google Scholar 

  7. Szebényi K, Erdei Z, Péntek A, Sebe A, Orbán TI, Sarkadi B, Apáti Á (2011) Human pluripotent stem cells in pharmacological and toxicological screening: new perspectives for personalized medicine. Pers Med 8(3):347–364

    Article  Google Scholar 

  8. Sison-Young R, Kia R, Heslop J, Kelly L, Rowe C, Cross M, Kitteringham N, Hanley N, Park B, Goldring C (2011) Human pluripotent stem cells for modeling toxicity. Adv Pharmacol (San Diego, Calif) 63:207–256

    Article  CAS  Google Scholar 

  9. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20(4):327–348

    Article  PubMed  PubMed Central  Google Scholar 

  10. Silver J, Schwab ME, Popovich PG (2014) Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 7(3):a020602. doi:10.1101/cshperspect.a020602

    Article  CAS  PubMed  Google Scholar 

  11. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Einhorn S, Venkatarangan L, Miller M, Mann DA, Watkins PB, LeCluyse E (2015) Morphological and functional characterization and assessment of iPSC-derived hepatocytes for in vitro toxicity testing. Toxicol Sci 147(1):39–54

    Article  CAS  PubMed  Google Scholar 

  13. Kia R, Sison RL, Heslop J, Kitteringham NR, Hanley N, Mills JS, Park BK, Goldring CE (2013) Stem cell‐derived hepatocytes as a predictive model for drug‐induced liver injury: are we there yet? Br J Clin Pharmacol 75(4):885–896

    Article  PubMed  Google Scholar 

  14. McGivern JV, Ebert AD (2014) Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv Drug Deliv Rev 69:170–178

    Article  CAS  PubMed  Google Scholar 

  15. Mordwinkin NM, Burridge PW, Wu JC (2013) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6(1):22–30

    Article  PubMed  Google Scholar 

  16. Sinnecker D, Laugwitz K-L, Moretti A (2014) Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacol Ther 143(2):246–252

    Article  CAS  PubMed  Google Scholar 

  17. Clements M, Millar V, Williams A, Kalinka S (2015) Bridging functional and structural cardiotoxicity assays using human embryonic stem-cell derived cardiomyocytes for a more comprehensive risk assessment. Toxicol Sci 148(1):241–260. doi:10.1093/toxsci/kfv180

    Article  CAS  PubMed  Google Scholar 

  18. Khan JM, Lyon AR, Harding SE (2013) The case for induced pluripotent stem cell‐derived cardiomyocytes in pharmacological screening. Br J Pharmacol 169(2):304–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and neurotoxicology. Neurotoxicology 33(3):586–604

    Article  CAS  PubMed  Google Scholar 

  20. Van Thriel C, Westerink RH, Beste C, Bale AS, Lein PJ, Leist M (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into < i > in vitro</i > assays and readouts. Neurotoxicology 33(4):911–924

    Article  CAS  PubMed  Google Scholar 

  21. Kumar V, Jahan S, Singh S, Khanna V, Pant A (2015) Progress toward the development of in vitro model system for chemical-induced developmental neurotoxicity: potential applicability of stem cells. Arch Toxicol 89(2):265–267

    Article  CAS  PubMed  Google Scholar 

  22. De Groot MW, Westerink RH, Dingemans MM (2013) Don’t judge a neuron only by its cover: neuronal function in in vitro developmental neurotoxicity testing. Toxicol Sci 132(1):1–7

    Article  CAS  PubMed  Google Scholar 

  23. Zimmer B, Kuegler P, Baudis B, Genewsky A, Tanavde V, Koh W, Tan B, Waldmann T, Kadereit S, Leist M (2010) Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death Differ 18(3):383–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee H-y, Inselman AL, Kanungo J, Hansen DK (2012) Alternative models in developmental toxicology. Syst Biol Reprod Med 58(1):10–22

    Article  CAS  PubMed  Google Scholar 

  25. Liu W, Deng Y, Liu Y, Gong W, Deng W (2013) Stem cell models for drug discovery and toxicology studies. J Biochem Mol Toxicol 27(1):17–27

    Article  CAS  PubMed  Google Scholar 

  26. Cananzi M, De Coppi P (2012) CD117+ amniotic fluid stem cells: state of the art and future perspectives. Organogenesis 8(3):77–88

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nam H, Lee K-H, Nam D-H, Joo KM (2015) Adult human neural stem cell therapeutics: current developmental status and prospect. World J Stem Cells 7(1):126–136

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gorba T, Conti L (2013) Neural stem cells as tools for drug discovery: novel platforms and approaches. Expert Opin Drug Discovery 8(9):1083–1094

    Article  CAS  Google Scholar 

  29. Bellenchi GC, Volpicelli F, Piscopo V, Perrone‐Capano C, di Porzio U (2013) Adult neural stem cells: an endogenous tool to repair brain injury? J Neurochem 124(2):159–167

    Article  CAS  PubMed  Google Scholar 

  30. Canovas-Jorda D, Louisse J, Pistollato F, Zagoura D, Bremer S (2014) Regenerative toxicology: the role of stem cells in the development of chronic toxicities. Expert Opin Drug Metab Toxicol 10(1):39–50

    Article  CAS  PubMed  Google Scholar 

  31. Hazeltine LB, Selekman JA, Palecek SP (2013) Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 31(7):1002–1019

    Article  CAS  PubMed  Google Scholar 

  32. Lu D, Chen EY, Lee P, Wang Y-C, Ching W, Markey C, Gulstrom C, Chen L-C, Nguyen T, Chin W-C (2014) Accelerated neuronal differentiation toward motor neuron lineage from human embryonic stem cell line (H9). Tissue engineering part C: methods

    Google Scholar 

  33. Thompson LH, Björklund A (2015) Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiol Dis 79:28–40. doi:10.1016/j.nbd.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  34. Okolicsanyi RK, Griffiths LR, Haupt LM (2014) Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix. Dev Biol 388(1):1–10

    Article  CAS  PubMed  Google Scholar 

  35. Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B (2013) Potential for neural differentiation of mesenchymal stem cells. In: Mesenchymal stem cells-basics and clinical application I. Springer, Berlin Heidelberg, pp 89–115

    Google Scholar 

  36. Nikoletopoulou V, Tavernarakis N (2012) Embryonic and induced pluripotent stem cell differentiation as a tool in neurobiology. Biotechnol J 7(9):1156–1168

    Article  CAS  PubMed  Google Scholar 

  37. Prè D, Nestor MW, Sproul AA, Jacob S, Koppensteiner P, Chinchalongporn V, Zimmer M, Yamamoto A, Noggle SA, Arancio O (2014) A time course analysis of the electrophysiological properties of neurons differentiated from human induced pluripotent stem cells (iPSCs). PLoS One 9(7):e103418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kashyap MP, Kumar V, Singh AK, Tripathi VK, Jahan S, Pandey A, Srivastava RK, Khanna VK, Pant AB (2014) Differentiating neurons derived from human umbilical cord blood stem cells work as a test system for developmental neurotoxicity. Mol Neurobiol. 1–17

  39. Kashyap M, Singh A, Siddiqui M, Kumar V, Tripathi V, Khanna V, Yadav S, Jain S, Pant A (2010) Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells. Chem Res Toxicol 23(11):1663–1672

    Article  CAS  PubMed  Google Scholar 

  40. Kashyap MP, Singh AK, Kumar V, Tripathi VK, Srivastava RK, Agrawal M, Khanna VK, Yadav S, Jain SK, Pant AB (2011) Monocrotophos induced apoptosis in PC12 cells: role of xenobiotic metabolizing cytochrome P450s. PLoS One 6(3):e17757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh A, Kashyap M, Jahan S, Kumar V, Tripathi V, Siddiqui M, Yadav S, Khanna V, Jain S, Das V (2012) Expression and inducibility of cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in human cord blood CD34+ stem cell derived differentiating neuronal cells. Toxicol Sci 129(2):392–410. doi:10.1093/toxsci/kfs213

    Article  CAS  PubMed  Google Scholar 

  42. Singh AK, Kashyap MP, Kumar V, Tripathi VK, Yadav DK, Khan F, Jahan S, Khanna VK, Yadav S, Pant AB (2013) 3-Methylcholanthrene induces neurotoxicity in developing neurons derived from human CD34+ Thy1+ stem cells by activation of aryl hydrocarbon receptor. Neuromolecular Med 15(3):570–592

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  44. Alvarado AS, Yamanaka S (2014) Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 157(1):110–119

    Article  CAS  PubMed Central  Google Scholar 

  45. Okano H, Yamanaka S (2014) iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pei Y, Peng J, Behl M, Sipes NS, Shockley KR, Rao MS, Tice RR, Zeng X (2015) Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res. doi: 10.1016/j.brainres.2015.07.048

  47. Zhao J, W-j J, Sun C, C-z H, Yang X-m, Gao J-g (2013) Induced pluripotent stem cells: origins, applications, and future perspectives. J Zhejiang Univ Sci B 14(12):1059–1069

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yamanaka S (2009) A fresh look at iPS cells. Cell 137(1):13–17

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi K, Yamanaka S (2013) Induced pluripotent stem cells in medicine and biology. Development 140(12):2457–2461

    Article  CAS  PubMed  Google Scholar 

  50. Khurana V, Tardiff DF, Chung CY, Lindquist S (2015) Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nat Rev Neurol 11(6):339–50. doi:10.1038/nrneurol.2015.79

    Article  CAS  PubMed  Google Scholar 

  51. Sterneckert JL, Reinhardt P, Schöler HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15(9):625–639

    Article  CAS  PubMed  Google Scholar 

  52. Scott CW, Peters MF, Dragan YP (2013) Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicol Lett 219(1):49–58

    Article  CAS  PubMed  Google Scholar 

  53. Kumar KK, Aboud AA, Bowman AB (2012) The potential of induced pluripotent stem cells as a translational model for neurotoxicological risk. Neurotoxicology 33(3):518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227

    Article  CAS  PubMed  Google Scholar 

  56. Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Vanti WB, Moreno H (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146(3):359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, Eggan K (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shtrichman R, Germanguz I, Eldor JI (2013) Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Curr Mol Med 13(5):792–805

    Article  CAS  PubMed  Google Scholar 

  59. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li X, Valadez AV, Zuo P, Nie Z (2012) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12):1509–1525

    Article  CAS  PubMed  Google Scholar 

  61. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610

    Article  CAS  PubMed  Google Scholar 

  62. Bratt‐Leal AM, Carpenedo RL, McDevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25(1):43–51

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kopanitsa MV, Afinowi NO, Grant SG (2006) Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays. BMC Neurosci 7(1):61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Musick K, Khatami D, Wheeler BC (2009) Three-dimensional micro-electrode array for recording dissociated neuronal cultures. Lab Chip 9(14):2036–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wallace K, Strickland JD, Valdivia P, Mundy WR, Shafer TJ (2015) A multiplexed assay for determination of neurotoxicant effects on spontaneous network activity and viability from microelectrode arrays. Neurotoxicology 49:79–85. doi:10.1016/j.neuro.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  66. Valdivia P, Martin M, LeFew WR, Ross J, Houck KA, Shafer TJ (2014) Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds. Neurotoxicology 44:204–217

    Article  CAS  PubMed  Google Scholar 

  67. Robinette BL, Harrill JA, Mundy WR, Shafer TJ (2011) In vitro assessment of developmental neurotoxicity: use of microelectrode arrays to measure functional changes in neuronal network ontogeny. Front Neuroeng 4:1. doi:10.3389/fneng.2011.00001

    Article  PubMed  PubMed Central  Google Scholar 

  68. Frimat J-P, Sisnaiske J, Subbiah S, Menne H, Godoy P, Lampen P, Leist M, Franzke J, Hengstler JG, van Thriel C (2010) The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab Chip 10(6):701–709

    Article  CAS  PubMed  Google Scholar 

  69. Moors M, Rockel TD, Abel J, Cline JE, Gassmann K, Schreiber T, Schuwald J, Weinmann N, Fritsche E (2009) Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ Health Perspect 117(7):1131–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Terrasso AP, Pinto C, Serra M, Filipe A, Almeida S, Ferreira AL, Pedroso P, Brito C, Alves PM (2015) Novel scalable 3D cell based model for in vitro neurotoxicity testing: combining human differentiated neurospheres with gene expression and functional endpoints. J Biotechnol 205:82–92

    Article  CAS  PubMed  Google Scholar 

  71. Baumann J, Gassmann K, Masjosthusmann S, DeBoer D, Bendt F, Giersiefer S, Fritsche E (2015) Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol. 1–13

  72. Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530

    Article  CAS  PubMed  Google Scholar 

  73. Bershteyn M, Kriegstein AR (2013) Cerebral organoids in a dish: progress and prospects. Cell 155(1):19–20

    Article  CAS  PubMed  Google Scholar 

  74. Eiraku M, Sasai Y (2012) Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 7(1):69–79

    Article  CAS  Google Scholar 

  75. Broccoli V, Giannelli SG, Mazzara PG (2014) Modeling physiological and pathological human neurogenesis in the dish. Front Neurosci 8:183. doi:10.3389/fnins.2014.00183

    Article  PubMed  PubMed Central  Google Scholar 

  76. Eiraku M, Sasai Y (2012) Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr Opin Neurobiol 22(5):768–777

    Article  CAS  PubMed  Google Scholar 

  77. Hatherell K, Couraud P-O, Romero IA, Weksler B, Pilkington GJ (2011) Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods 199(2):223–229

    Article  PubMed  Google Scholar 

  78. Pamies D, Hartung T, Hogberg HT (2014) Biological and medical applications of a brain-on-a-chip. Exp Biol Med 239(9):1096–1107. doi:10.1177/1535370214537738

    Article  CAS  Google Scholar 

  79. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  PubMed  Google Scholar 

  80. Gjorevski N, Ranga A, Lutolf MP (2014) Bioengineering approaches to guide stem cell-based organogenesis. Development 141(9):1794–1804

    Article  CAS  PubMed  Google Scholar 

  81. Hogberg HT, Bressler J, Christian KM, Harris G, Makri G, O’Driscoll C, Pamies D, Smirnova L, Wen Z, Hartung T (2013) Toward a 3D model of human brain development for studying gene/environment interactions. Studies 13:15

    Google Scholar 

  82. Wheeler HE, Wing C, Delaney SM, Komatsu M, Dolan ME (2015) Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells. PLoS One 10(2):e0118020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hubbard K, Beske P, Lyman M, McNutt P (2015) Functional evaluation of biological neurotoxins in networked cultures of stem cell-derived central nervous system neurons. J Vis Exp 96.doi:10.3791/52361

  84. Cao WS, Livesey JC, Halliwell RF (2015) An evaluation of a human stem cell line to identify risk of developmental neurotoxicity with antiepileptic drugs. Toxicol In Vitro 29(3):592–599

    Article  CAS  PubMed  Google Scholar 

  85. Bai X, Bosnjak ZJ (2013) Emerging model in anesthetic developmental neurotoxicity: human stem cells. Int J Clin Anesthesiol 1:1002

    PubMed  PubMed Central  Google Scholar 

  86. Chang S-H, Lee HJ, Kang B, Yu K-N, Minai-Tehrani A, Lee S, Kim SU, Cho M-H (2013) Methylmercury induces caspase-dependent apoptosis and autophagy in human neural stem cells. J Toxicol Sci 38(6):823–831

    Article  CAS  PubMed  Google Scholar 

  87. Meamar R, Dehghani L, Karamali F (2012) Toxicity effects of methamphetamine on embryonic stem cell-derived neuron. J Res Med Sci 17(5):470

    PubMed  PubMed Central  Google Scholar 

  88. Li T, Wang W, Pan Y-W, Xu L, Xia Z (2013) A hydroxylated metabolite of flame-retardant PBDE-47 decreases the survival, proliferation, and neuronal differentiation of primary cultured adult neural stem cells and interferes with signaling of ERK5 MAP kinase and neurotrophin 3. Toxicol Sci 134(1):111–124. doi:10.1093/toxsci/kft083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mutsaers HA, Tofighi R (2012) Dexamethasone enhances oxidative stress-induced cell death in murine neural stem cells. Neurotox Res 22(2):127–137

    Article  CAS  PubMed  Google Scholar 

  90. Rocha R, Gimeno-Alcaniz J, Martin-Ibanez R, Canals J, Velez D, Devesa V (2011) Arsenic and fluoride induce neural progenitor cell apoptosis. Toxicol Lett 203(3):237–244

    Article  CAS  PubMed  Google Scholar 

  91. Dye BR, Hill DR, Ferguson MA, Tsai Y-H, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD (2015) In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4:e05098

    Article  PubMed Central  Google Scholar 

  92. Xia Y, Sancho-Martinez I, Nivet E, Esteban CR, Campistol JM, Belmonte JCI (2014) The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor–like cells. Nat Protoc 9(11):2693–2704

    Article  PubMed  Google Scholar 

  93. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9(10):2329–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Greggio C, De Franceschi F, Figueiredo-Larsen M, Grapin-Botton A (2014) In vitro pancreas organogenesis from dispersed mouse embryonic progenitors. J Vis Exp 89:e51725–e51725

    Google Scholar 

  95. Koehler KR, Hashino E (2014) 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc 9(6):1229–1244

    Article  CAS  PubMed  Google Scholar 

  96. Tieng V, Stoppini L, Villy S, Fathi M, Dubois-Dauphin M, Krause K-H (2014) Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev 23(13):1535–1547

    Article  CAS  PubMed  Google Scholar 

  97. Takebe T, Sekine K, Suzuki Y, Enomura M, Tanaka S, Ueno Y, Zheng Y-W, Taniguchi H (2012) Self-organization of human hepatic organoid by recapitulating organogenesis in vitro. Transplant Proc 4(4):1018–1020, Elsevier

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the director of the CSIR-IITR, Lucknow, India, for his interest. Financial support from the Department of Science and Technology, Ministry of Science & Technology, Government of India, New Delhi, India (Grant No. SR/SO/Z 36/2007/91/10); Department of Biotechnology, Ministry of Science & Technology, Government of India, New Delhi, India (Grant No. 102/IFD/SAN/3533/2014-15); and Council of Scientific & Industrial Research, Government of India, New Delhi, India (Grant No. BSC0111/INDEPTH/ CSIR Network Project) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Pant.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Srivastava, A., Kumar, V. et al. Stem Cells in Neurotoxicology/Developmental Neurotoxicology: Current Scenario and Future Prospects. Mol Neurobiol 53, 6938–6949 (2016). https://doi.org/10.1007/s12035-015-9615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9615-2

Keywords

Navigation