Skip to main content

Advertisement

Log in

Mitochondrial DNA Haplogroup A Decreases the Risk of Drug Addiction but Conversely Increases the Risk of HIV-1 Infection in Chinese Addicts

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Drug addiction is one of the most serious social problems in the world today and addicts are always at a high risk of acquiring HIV infection. Mitochondrial impairment has been reported in both drug addicts and in HIV patients undergoing treatment. In this study, we aimed to investigate whether mitochondrial DNA (mtDNA) haplogroup could affect the risk of drug addiction and HIV-1 infection in Chinese. We analyzed mtDNA sequence variations of 577 Chinese intravenous drug addicts (289 with HIV-1 infection and 288 without) and compared with 2 control populations (n = 362 and n = 850). We quantified the viral load in HIV-1-infected patients with and without haplogroup A status and investigated the potential effect of haplogroup A defining variants m.4824A > G and m.8794C > T on the cellular reactive oxygen species (ROS) levels by using an allotopic expression assay. mtDNA haplogroup A had a protective effect against drug addiction but appeared to confer an increased risk of HIV infection in addicts. HIV-1-infected addicts with haplogroup A had a trend for a higher viral load, although the mean viral load was similar between carriers of haplogroup A and those with other haplogroup. Hela cells overexpressing allele m.8794 T showed significantly decreased ROS levels as compared to cells with the allele m.8794C (P = 0.03). Our results suggested that mtDNA haplogroup A might protect against drug addiction but increase the risk of HIV-1 infection. The contradictory role of haplogroup A might be caused by an alteration in mitochondrial function due to a particular mtDNA ancestral variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chao J, Nestler EJ (2004) Molecular neurobiology of drug addiction. Annu Rev Med 55:113–132. doi:10.1146/annurev.med.55.091902.103730

    Article  CAS  PubMed  Google Scholar 

  2. Hall FS, Drgonova J, Jain S, Uhl GR (2013) Implications of genome wide association studies for addiction: are our a priori assumptions all wrong? Pharmacol Ther 140:267–279. doi:10.1016/j.pharmthera.2013.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kendler KS, Maes HH, Sundquist K, Ohlsson H, Sundquist J (2014) Genetic and family and community environmental effects on drug abuse in adolescence: a Swedish national twin and sibling study. Am J Psychiatry 171:209–217. doi:10.1176/appi.ajp.2013.12101300

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kendler KS et al (2012) Genetic and familial environmental influences on the risk for drug abuse: a national Swedish adoption study. Arch Gen Psychiatry 69:690–697. doi:10.1001/archgenpsychiatry.2011.2112

    Article  PubMed  PubMed Central  Google Scholar 

  5. Douek DC, Roederer M, Koup RA (2009) Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 60:471–484. doi:10.1146/annurev.med.60.041807.123549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Telenti A, McLaren P (2010) Genomic approaches to the study of HIV-1 acquisition. J Infect Dis 202(Suppl 3):S382–S386. doi:10.1086/655969

    Article  PubMed  Google Scholar 

  7. van Manen D, van 't Wout AB, Schuitemaker H (2012) Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics. Retrovirology 9:70. doi:10.1186/1742-4690-9-70

    Article  PubMed  PubMed Central  Google Scholar 

  8. Koshiba T (2013) Mitochondrial-mediated antiviral immunity. Biochim Biophys Acta 1833:225–232. doi:10.1016/j.bbamcr.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  9. Papa S et al (2012) The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol 942:3–37. doi:10.1007/978-94-007-2869-1_1

    Article  CAS  PubMed  Google Scholar 

  10. Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ (2013) Mitochondrial calcium uptake. Proc Natl Acad Sci U S A 110:10479–10486. doi:10.1073/pnas.1300410110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaturvedi RK, Flint Beal M (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29. doi:10.1016/j.freeradbiomed.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  12. Feng Y-M et al (2013) Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin. Autophagy 9:1395–1406. doi:10.4161/auto.2546825468

    Article  CAS  PubMed  Google Scholar 

  13. Lin X et al (2009) Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J 276:2022–2036. doi:10.1111/j.1742-4658.2009.06938.x

    Article  CAS  PubMed  Google Scholar 

  14. Bociaga-Jasik M et al (2013) Mitochondrial function and apoptosis of peripheral mononuclear cells (PBMCs) in the HIV infected patients. Curr HIV Res 11:263–270

    Article  CAS  PubMed  Google Scholar 

  15. Jacobs JL, Coyne CB (2013) Mechanisms of MAVS regulation at the mitochondrial membrane. J Mol Biol 13:5009–5019. doi:10.1016/j.jmb.2013.10.007

    Article  Google Scholar 

  16. Gardner K, Hall PA, Chinnery PF, Payne BA (2013) HIV treatment and associated mitochondrial pathology: review of 25 years of in vitro, animal, and human studies. Toxicol Pathol 42:811–822. doi:10.1177/0192623313503519

    Article  PubMed  Google Scholar 

  17. Ji Y et al (2008) Mitochondrial DNA haplogroups M7b1′2 and M8a affect clinical expression of Leber hereditary optic neuropathy in Chinese families with the m.11778G > A mutation. Am J Hum Genet 83:760–768. doi:10.1016/j.ajhg.2008.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang A-M et al (2011) Mitochondrial DNA haplogroup background affects LHON, but not suspected LHON, in Chinese patients. PLoS One 6, e27750. doi:10.1371/journal.pone.0027750

    Article  CAS  PubMed  Google Scholar 

  19. Wang D et al (2012) Mitochondrial DNA copy number, but not haplogroup, confers a genetic susceptibility to leprosy in Han Chinese from Southwest China. PLoS One 7, e38848. doi:10.1371/journal.pone.0038848

  20. Yang Y et al (2008) Mitochondrial DNA haplogroup R predicts survival advantage in severe sepsis in the Han population. Genet Med 10:187–192. doi:10.1097/GIM.0b013e318163c343

    Article  PubMed  Google Scholar 

  21. Guzmán-Fulgencio M et al (2013) Mitochondrial haplogroups are associated with clinical pattern of AIDS progression in HIV-infected patients. J Acquir Immune Defic Syndr 63:178–183. doi:10.1097/QAI.0b013e3182893f74

    Article  PubMed  Google Scholar 

  22. Hendrickson SL et al (2008) Mitochondrial DNA haplogroups influence AIDS progression. AIDS 22:2429–2439. doi:10.1097/QAD.0b013e32831940bb

    Article  CAS  PubMed  Google Scholar 

  23. Fachal L et al (2015) No evidence of association between common European mitochondrial DNA variants in Alzheimer, Parkinson, and migraine in the Spanish population. Am J Med Genet B Neuropsychiatr Genet 168B:54–65. doi:10.1002/ajmg.b.32276

    Article  PubMed  Google Scholar 

  24. Salas A, Elson JL (2015) Mitochondrial DNA as a risk factor for false positives in case–control association studies. J Genet Genomics 42:169–172. doi:10.1016/j.jgg.2015.03.002

    Article  PubMed  Google Scholar 

  25. Salas A, Garcia-Magarinos M, Logan I, Bandelt HJ (2014) The saga of the many studies wrongly associating mitochondrial DNA with breast cancer. BMC Cancer 14:659. doi:10.1186/1471-2407-14-659

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147. doi:10.1038/13779

    Article  CAS  PubMed  Google Scholar 

  27. Fan L, Yao YG (2013) An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion 13:360–363. doi:10.1016/j.mito.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  28. Zhou S et al (2007) Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck. Proc Natl Acad Sci U S A 104:7540–7545. doi:10.1073/pnas.0610818104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaltimbacher V, Bonnet C, Lecoeuvre G, Forster V, Sahel JA, Corral-Debrinski M (2006) mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA 12:1408–1417. doi:10.1261/rna.18206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bi R et al (2015) Mitochondrial DNA haplogroup B5 confers genetic susceptibility to Alzheimer’s disease in Han Chinese. Neurobiol Aging 36:1604.e7–16. doi:10.1016/j.neurobiolaging.2014.10.009

  31. Guo H et al (2012) Presence of mutation m.14484T > C in a Chinese family with maternally inherited essential hypertension but no expression of LHON. Biochim Biophys Acta 1822:1535–1543. doi:10.1016/j.bbadis.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  32. Pardo-Seco J, Amigo J, González-Manteiga W, Salas A (2013) A generalized model to estimate the statistical power in mitochondrial disease studies involving 2xk tables. PLoS One 8, e73567. doi:10.1371/journal.pone.0073567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ (2006) Harvesting the fruit of the human mtDNA tree. Trends Genet 22:339–345. doi:10.1016/j.tig.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  34. van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30:E386–E394. doi:10.1002/humu.20921

    Article  PubMed  Google Scholar 

  35. Chinnery PF et al (2000) Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies. Neurology 55:302–304

    Article  CAS  PubMed  Google Scholar 

  36. Zhang W et al (2014) A matrilineal genetic legacy from the last glacial maximum confers susceptibility to schizophrenia in Han Chinese. J Genet Genomics 41:397–407. doi:10.1016/j.jgg.2014.05.004

    Article  PubMed  Google Scholar 

  37. Takagi K, Yamada Y, Gong JS, Sone T, Yokota M, Tanaka M (2004) Association of a 5178C––>A (Leu237Met) polymorphism in the mitochondrial DNA with a low prevalence of myocardial infarction in Japanese individuals. Atherosclerosis 175:281–286. doi:10.1016/j.atherosclerosis.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  38. Ugalde C et al (2007) Mutated ND2 impairs mitochondrial complex I assembly and leads to Leigh syndrome. Mol Genet Metab 90:10–14. doi:10.1016/j.ymgme.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  39. Oca-Cossio J, Kenyon L, Hao H, Moraes CT (2003) Limitations of allotopic expression of mitochondrial genes in mammalian cells. Genetics 165:707–720

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Perales-Clemente E, Fernández-Silva P, Acín-Pérez R, Pérez-Martos A, Enríquez JA (2011) Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res 39:225–234. doi:10.1093/nar/gkq769

    Article  CAS  PubMed  Google Scholar 

  41. Petros JA et al (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A 102:719–724. doi:10.1073/pnas.0408894102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salas A, Fachal L, Marcos-Alonso S, Vega A, Martinon-Torres F (2009) Investigating the role of mitochondrial haplogroups in genetic predisposition to meningococcal disease. PLoS One 4, e8347. doi:10.1371/journal.pone.0008347

    Article  PubMed  PubMed Central  Google Scholar 

  43. Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all participants in this study. We thank Dr. Califano and Dr. Corral-Debrinski for sharing the plasmids and Miss Dandan Yu for the technical help. This study was supported by the National Natural Science Foundation of China (grant number 31171225), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant number XDB02020003), and the Ministry of Science and Technology of China (grant number 2011CB910900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Tang Zheng or Yong-Gang Yao.

Additional information

A-Mei Zhang and Qiu-Xiang Hu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 850 kb)

Table S2

(DOC 383 kb)

Table S3

(DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, AM., Hu, QX., Liu, FL. et al. Mitochondrial DNA Haplogroup A Decreases the Risk of Drug Addiction but Conversely Increases the Risk of HIV-1 Infection in Chinese Addicts. Mol Neurobiol 53, 3873–3881 (2016). https://doi.org/10.1007/s12035-015-9323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9323-y

Keywords

Navigation