Skip to main content
Log in

LSD1 is Required for Hair Cell Regeneration in Zebrafish

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roberson DW, Rubel EW (1994) Cell division in the gerbil cochlea after acoustic trauma. Am J Otol 15(1):28–34

    CAS  PubMed  Google Scholar 

  2. Forge A, Li L, Corwin JT, Nevill G (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259(5101):1616–1619

    Article  CAS  PubMed  Google Scholar 

  3. Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT (1993) Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259(5101):1619–1622

    Article  CAS  PubMed  Google Scholar 

  4. Rubel EW, Dew LA, Roberson DW (1995) Mammalian vestibular hair cell regeneration. Science 267(5198):701–707

    Article  CAS  PubMed  Google Scholar 

  5. Forge A, Li L, Nevill G (1998) Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J Comp Neurol 397(1):69–88

    Article  CAS  PubMed  Google Scholar 

  6. Burns JC, Cox BC, Thiede BR, Zuo J, Corwin JT (2012) In vivo proliferative regeneration of balance hair cells in newborn mice. J Neurosci Off J Soc Neurosci 32(19):6570–6577. doi:10.1523/JNEUROSCI.6274-11.2012

    Article  CAS  Google Scholar 

  7. Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen D, Chalasani K, Steigelman KA et al (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141(4):816–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240(4860):1772–1774

    Article  CAS  PubMed  Google Scholar 

  9. Balak KJ, Corwin JT, Jones JE (1990) Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system. J Neurosci Off J Soc Neurosci 10(8):2502–2512

    CAS  Google Scholar 

  10. Harris JA, Cheng AG, Cunningham LL, MacDonald G, Raible DW, Rubel EW (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 4(2):219–234. doi:10.1007/s10162-002-3022-x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hernandez PP, Moreno V, Olivari FA, Allende ML (2006) Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hear Res 213(1-2):1–10. doi:10.1016/j.heares.2005.10.015

    Article  CAS  PubMed  Google Scholar 

  12. Driever W, Stemple D, Schier A, Solnica-Krezel L (1994) Zebrafish: genetic tools for studying vertebrate development. Trends Genet 10(5):152–159

    Article  CAS  PubMed  Google Scholar 

  13. Haddon C, Lewis J (1996) Early ear development in the embryo of the zebrafish, Danio rerio. J Comp Neurol 365(1):113–128. doi:10.1002/(SICI)1096-9861(19960129)365:1<113::AID-CNE9>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  14. Pyati UJ, Look AT, Hammerschmidt M (2007) Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Semin Cancer Biol 17(2):154–165. doi:10.1016/j.semcancer.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  15. Brignull HR, Raible DW, Stone JS (2009) Feathers and fins: non-mammalian models for hair cell regeneration. Brain Res 1277:12–23. doi:10.1016/j.brainres.2009.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ledent V (2002) Postembryonic development of the posterior lateral line in zebrafish. Development 129(3):597–604

    CAS  PubMed  Google Scholar 

  17. Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233(3):377–389. doi:10.1002/cne.902330307

    Article  CAS  PubMed  Google Scholar 

  18. Nicolson T (2005) The genetics of hearing and balance in zebrafish. Annu Rev Genet 39:9–22. doi:10.1146/annurev.genet.39.073003.105049

    Article  CAS  PubMed  Google Scholar 

  19. Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 421(2):189–198

    Article  CAS  PubMed  Google Scholar 

  20. Chiu LL, Cunningham LL, Raible DW, Rubel EW, Ou HC (2008) Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol 9(2):178–190. doi:10.1007/s10162-008-0118-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233(1–2):46–53. doi:10.1016/j.heares.2007.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Trump WJ, Coombs S, Duncan K, McHenry MJ (2010) Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hear Res 261(1–2):42–50. doi:10.1016/j.heares.2010.01.001

    Article  PubMed  Google Scholar 

  23. Giari L, Dezfuli BS, Astolfi L, Martini A (2012) Ultrastructural effects of cisplatin on the inner ear and lateral line system of zebrafish (Danio rerio) larvae. J Appl Toxicol 32(4):293–299. doi:10.1002/jat.1691

    Article  CAS  PubMed  Google Scholar 

  24. Linbo TL, Stehr CM, Incardona JP, Scholz NL (2006) Dissolved copper triggers cell death in the peripheral mechanosensory system of larval fish. Environ Toxicol Chem 25(2):597–603

    Article  CAS  PubMed  Google Scholar 

  25. Ma EY, Rubel EW, Raible DW (2008) Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J Neurosci 28(9):2261–2273. doi:10.1523/JNEUROSCI.4372-07.2008

    Article  CAS  PubMed  Google Scholar 

  26. Cotanche DA, Lee KH (1994) Regeneration of hair cells in the vestibulocochlear system of birds and mammals. Curr Opin Neurobiol 4(4):509–514

    Article  CAS  PubMed  Google Scholar 

  27. Fekete DM, Muthukumar S, Karagogeos D (1998) Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 18(19):7811–7821

    CAS  PubMed  Google Scholar 

  28. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi:10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  29. Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12(2):142–148

    Article  CAS  PubMed  Google Scholar 

  30. Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18(2):159–168. doi:10.1016/j.gde.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  31. Yoshimi A, Kurokawa M (2011) Key roles of histone methyltransferase and demethylase in leukemogenesis. J Cell Biochem 112(2):415–424. doi:10.1002/jcb.22972

    Article  CAS  PubMed  Google Scholar 

  32. Shi Y (2007) Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 8(11):829–833. doi:10.1038/nrg2218

    Article  CAS  PubMed  Google Scholar 

  33. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953. doi:10.1016/j.cell.2004.12.012

    Article  CAS  PubMed  Google Scholar 

  34. Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435. doi:10.1038/nature04021

    CAS  PubMed  Google Scholar 

  35. Amente S, Bertoni A, Morano A, Lania L, Avvedimento EV, Majello B (2010) LSD1-mediated demethylation of histone H3 lysine 4 triggers Myc-induced transcription. Oncogene 29(25):3691–3702. doi:10.1038/onc.2010.120

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W, Liang J, Sun L et al (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138(4):660–672. doi:10.1016/j.cell.2009.05.050

    Article  CAS  PubMed  Google Scholar 

  37. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439. doi:10.1038/nature04020

    CAS  PubMed  Google Scholar 

  38. Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS, Ju BG, Ohgi KA et al (2007) Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128(3):505–518. doi:10.1016/j.cell.2006.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang P, Wang Y, Chen J, Li H, Kang L, Zhang Y, Chen S, Zhu B et al (2011) RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for SOX2 in reprogramming somatic cells to pluripotency. Stem Cells 29(5):791–801. doi:10.1002/stem.634

    Article  CAS  PubMed  Google Scholar 

  40. Scoumanne A, Chen XB (2007) The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J Biol Chem 282(21):15471–15475. doi:10.1074/jbc.M701023200

    Article  CAS  PubMed  Google Scholar 

  41. Cho HS, Suzuki T, Dohmae N, Hayami S, Unoki M, Yoshimatsu M, Toyokawa G, Takawa M et al (2011) Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells. Cancer Res 71(3):655–660. doi:10.1158/0008-5472.Can-10-2446

    Article  CAS  PubMed  Google Scholar 

  42. Lv TF, Yuan DM, Miao XH, Lv YL, Zhan P, Shen XK, Song Y (2012) Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS ONE 7(4), e35065. doi:10.1371/journal.pone.0035065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Foster CT, Dovey OM, Lezina L, Luo JL, Gant TW, Barlev N, Bradley A, Cowley SM (2010) Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol Cell Biol 30(20):4851–4863. doi:10.1128/Mcb.00521-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Adamo A, Sese B, Boue S, Castano J, Paramonov I, Barrero MJ, Belmonte JCI (2011) LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 13(6):652–659. doi:10.1038/Ncb2246

    Article  CAS  PubMed  Google Scholar 

  45. Sprussel A, Schulte JH, Weber S, Necke M, Handschke K, Thor T, Pajtler KW, Schramm A et al (2012) Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 26(9):2039–2051. doi:10.1038/Leu.2012.157

    Article  CAS  PubMed  Google Scholar 

  46. Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li YY, Ciceri F, Blaser JG et al (2012) The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21(4):473–487. doi:10.1016/j.ccr.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  47. Sun GQ, Alzayady K, Stewart R, Ye P, Yang S, Li WD, Shi YH (2010) Histone demethylase LSD1 regulates neural stem cell proliferation. Mol Cell Biol 30(8):1997–2005. doi:10.1128/Mcb.01116-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Lu F, Ren Q, Sun H, Xu ZS, Lan RF, Liu YQ, Ward D et al (2011) Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 71(23):7238–7249. doi:10.1158/0008-5472.Can-11-0896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He Y, Yu H, Cai C, Sun S, Chai R, Li H (2014) Inhibition of H3K4me2 demethylation protects auditory hair cells from neomycin-induced apoptosis. Mol Neurobiol. doi:10.1007/s12035-014-8841-3

    Google Scholar 

  50. He Y, Yu H, Sun S, Wang Y, Liu I, Chen Z, Li H (2013) Trans-2-phenylcyclopropylamine regulates zebrafish lateral line neuromast development mediated by depression of LSD1 activity. Int J Dev Biol 57(5):365–373. doi:10.1387/ijdb.120227hl

    Article  CAS  PubMed  Google Scholar 

  51. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. doi:10.1002/aja.1002030302

    Article  CAS  PubMed  Google Scholar 

  52. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3(1):59–69. doi:10.1038/nprot.2007.514

    Article  CAS  PubMed  Google Scholar 

  53. Seiler C, Nicolson T (1999) Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants. J Neurobiol 41(3):424–434

    Article  CAS  PubMed  Google Scholar 

  54. Wright TJ, Mansour SL (2003) FGF signaling in ear development and innervation. Curr Top Dev Biol 57:225–259

    Article  CAS  PubMed  Google Scholar 

  55. Munnamalai V, Fekete DM (2013) Wnt signaling during cochlear development. Semin Cell Dev Biol 24(5):480–489. doi:10.1016/j.semcdb.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stewart S, Tsun ZY, Belmonte JCI (2009) A histone demethylase is necessary for regeneration in zebrafish. Proc Natl Acad Sci U S A 106(47):19889–19894. doi:10.1073/pnas.0904132106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He Y, Cai C, Tang D, Sun S, Li H (2014) Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts. Front Cell Neurosci 8:832. doi:10.3389/fncel.2014.00382

    Google Scholar 

  58. Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8(2):149–160. doi:10.1038/nrm2105

    Article  CAS  PubMed  Google Scholar 

  59. Chen P, Segil N (1999) p27(Kip1) links cell proliferation to morphogenesis in the developing organ of corti. Development 126(8):1581–1590

    CAS  PubMed  Google Scholar 

  60. Lowenheim H, Furness DN, Kil J, Zinn C, Gultig K, Fero ML, Frost D, Gummer AW et al (1999) Gene disruption of p27(Kip1) allows cell proliferation in the postnatal and adult organ of corti. Proc Natl Acad Sci U S A 96(7):4084–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ono K, Nakagawa T, Kojima K, Matsumoto M, Kawauchi T, Hoshino M, Ito J (2009) Silencing p27 reverses post-mitotic state of supporting cells in neonatal mouse cochleae. Mol Cell Neurosci 42(4):391–398. doi:10.1016/j.mcn.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  62. Laine H, Doetzlhofer A, Mantela J, Ylikoski J, Laiho M, Roussel MF, Segil N, Pirvola U (2007) p19(Ink4d) and p21(Cip1) collaborate to maintain the postmitotic state of auditory hair cells, their codeletion leading to DNA damage and p53-mediated apoptosis. J Neurosci 27(6):1434–1444. doi:10.1523/Jneurosci.4956-06.2007

    Article  CAS  PubMed  Google Scholar 

  63. Denicourt C, Dowdy SF (2004) Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev 18(8):851–855. doi:10.1101/Gad.1205304

    Article  CAS  PubMed  Google Scholar 

  64. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  CAS  PubMed  Google Scholar 

  65. Gulappa T, Reddy RS, Suman S, Nyakeriga AM, Damodaran C (2013) Molecular interplay between cdk4 and p21 dictates G(0)/G(1) cell cycle arrest in prostate cancer cells. Cancer Lett 337(2):177–183. doi:10.1016/j.canlet.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10(1):55–63. doi:10.1038/Nm979

    Article  CAS  PubMed  Google Scholar 

  67. Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA, Jaenisch R (2008) Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3(2):132–135. doi:10.1016/j.stem.2008.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Head JR, Gacioch L, Pennisi M, Meyers JR (2013) Activation of canonical Wnt/beta-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line. Dev Dyn 242(7):832–846. doi:10.1002/dvdy.23973

    Article  CAS  PubMed  Google Scholar 

  69. Lush ME, Piotrowski T (2014) ErbB expressing Schwann cells control lateral line progenitor cells via non-cell-autonomous regulation of Wnt/beta-catenin. eLife 3, e01832. doi:10.7554/eLife.01832

    Article  PubMed  PubMed Central  Google Scholar 

  70. Aman A, Nguyen M, Piotrowski T (2011) Wnt/beta-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Dev Biol 349(2):470–482. doi:10.1016/j.ydbio.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  71. Jacques BE, Montgomery WH, Uribe PM, Yatteau A, Asuncion JD, Resendiz G, Matsui JI, Dabdoub A (2014) The role of Wnt/beta-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. Dev Neurobiol 74(4):438–456. doi:10.1002/dneu.22134

    Article  CAS  PubMed  Google Scholar 

  72. Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan TA, Liu Z, Taketo MM et al (2012) Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci U S A 109(21):8167–8172. doi:10.1073/pnas.1202774109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chai R, Xia A, Wang T, Jan TA, Hayashi T, Bermingham-McDonogh O, Cheng AG (2011) Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol 12(4):455–469. doi:10.1007/s10162-011-0267-2

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shi F, Hu L, Edge AS (2013) Generation of hair cells in neonatal mice by beta-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci U S A 110(34):13851–13856. doi:10.1073/pnas.1219952110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shi F, Hu L, Jacques BE, Mulvaney JF, Dabdoub A, Edge AS (2014) Beta-catenin is required for hair-cell differentiation in the cochlea. J Neurosc Off J Soc Neurosci 34(19):6470–6479. doi:10.1523/JNEUROSCI.4305-13.2014

    Article  CAS  Google Scholar 

  76. Shi F, Kempfle JS, Edge AS (2012) Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci 32(28):9639–9648. doi:10.1523/JNEUROSCI.1064-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dabdoub A, Donohue MJ, Brennan A, Wolf V, Montcouquiol M, Sassoon DA, Hseih JC, Rubin JS et al (2003) Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 130(11):2375–2384

    Article  CAS  PubMed  Google Scholar 

  78. Jacques BE, Puligilla C, Weichert RM, Ferrer-Vaquer A, Hadjantonakis AK, Kelley MW, Dabdoub A (2012) A dual function for canonical Wnt/beta-catenin signaling in the developing mammalian cochlea. Development 139(23):4395–4404. doi:10.1242/dev.080358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang ZB, Li SZ, Song W, Li X, Li QS, Zhang ZY, Han YQ, Zhang XD et al (2013) Lysine-specific demethylase 1 (LSD1/KDM1A) contributes to colorectal tumorigenesis via activation of the Wnt/B-catenin pathway by down-regulating Dickkopf-1 (DKK1). PLoS ONE 8(7), e70077. doi:10.1371/journal.pone.0070077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gryzik T, Muller HAJ (2004) FGF8-like1 and FGF8-like2 encode putative ligands of the FGF receptor Htl for mesoderm migration and are required in the Drosophila gastrula. Curr Biol 14(8):659–667. doi:10.1016/j.cub.2004.03.058

    Article  CAS  PubMed  Google Scholar 

  81. Yang XS, Dormann D, Munsterberg AE, Weijer CJ (2002) Cell movement patterns during gastrulation in the chick are controlled by chemotaxis mediated by positive and negative FGF4 and FGF8. Dev Cell 3(3):425–437. doi:10.1016/S1534-5807(02)00256-3

    Article  CAS  PubMed  Google Scholar 

  82. Kimelman D, Kirschner M (1987) Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51(5):869–877

    Article  CAS  PubMed  Google Scholar 

  83. Thisse B, Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287(2):390–402. doi:10.1016/j.ydbio.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  84. Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2(4):301–314. doi:10.1016/S1535-6108(02)00150-2

    Article  CAS  PubMed  Google Scholar 

  85. Nechiporuk A, Raible DW (2008) FGF-dependent mechanosensory organ patterning in zebrafish. Science 320(5884):1774–1777. doi:10.1126/science.1156547

    Article  CAS  PubMed  Google Scholar 

  86. Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15(5):749–761. doi:10.1016/j.devcel.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  87. Millimaki BB, Sweet EM, Dhason MS, Riley BB (2007) Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development 134(2):295–305. doi:10.1242/Dev.02734

    Article  CAS  PubMed  Google Scholar 

  88. Cafaro J, Lee GS, Stone JS (2007) Atoh1 expression defines activated progenitors and differentiating hair cells during avian hair cell regeneration. Dev Dyn 236(1):156–170. doi:10.1002/dvdy.21023

    Article  CAS  PubMed  Google Scholar 

  89. Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW (2013) The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 376(1):86–98. doi:10.1016/j.ydbio.2013.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kelly MC, Chang Q, Pan A, Lin X, Chen P (2012) Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J Neurosci 32(19):6699–6710. doi:10.1523/JNEUROSCI.5420-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dong Liu, Min Yu, and Shaoyang Sun for their technical assistance and Yalin Huang for the help with the confocal microscope. This work was supported by grants from the Major State Basic Research Development Program of China (973 Program) (2011CB504506), the Young Scientist 973 Project (2015CB965000), the National Natural Science Foundation of China (Nos. 81230019, 81470687, 81470692), the Program for Changjiang Scholars and Innovative Research Team in Universities (IRT1010), the Jiangsu Province Natural Science Foundation (BK20140620), the Specialized Research Fund for the Doctor Program of Higher Education (20120071110077), the Fundamental Research Funds for the Central Universities (2242014R30022, NO2013WSN085), the Construction Program of Shanghai Committee of Science and Technology (12DZ2251700), the Major Program of Shanghai Committee of Science and Technology (11441901000), and the China Postdoctoral Science Foundation Funded Project (2014M551328).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawei Li.

Additional information

Yingzi He and Dongmei Tang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Effects of 2-PCPA on apoptosis. 5-dpf zebrafish were treated with neomycin for 1 h and then incubated for 12 or 48 h with 100 μM 2-PCPA. Protein extracts were prepared and subjected to western blotting assay using an antibody against cleaved caspase-3. β-Actin was included as the control. (DOCX 103 kb)

Supplemental table

Primers used in the study (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Tang, D., Cai, C. et al. LSD1 is Required for Hair Cell Regeneration in Zebrafish. Mol Neurobiol 53, 2421–2434 (2016). https://doi.org/10.1007/s12035-015-9206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9206-2

Keywords

Navigation