Skip to main content

Advertisement

Log in

Interplay Between Exosomes, microRNAs and Toll-Like Receptors in Brain Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, participate in intercellular communication, and particularly, in paracrine and endocrine signalling. The EVs and their specific contents have been considered hallmarks of different diseases. It has been recently discovered that EVs can co-transport nucleic acids such as DNAs, ribosomal RNAs, circular RNAs (circRNAs), long noncoding RNAs (lnRNAs) and microRNAs (miRNAs). miRNAs are important regulators of gene expression at the post-transcriptional level, although they may also play other roles. Recent evidence supports the hypothesis that miRNAs can activate Toll-like receptors (TLRs) under certain circumstances. TLRs belong to a multigene family of immune system receptors and have been recently described in the nervous system. In the immune system, TLRs are important for the recognition of the invading microorganisms, whereas in the nervous system, they recognise endogenous ligands released by undifferentiated or necrotic/injured cells. In the neuronal disease field, TLRs activity has been associated with amyotrophic lateral sclerosis (ALS), stroke, Alzheimer’s and Parkinson’s disease. Herein, we reviewed the current knowledge of the relationship between miRNA release by EVs and the inflammation signalling triggered by TLRs in neighbouring cells or during long-distance cell-to-cell communication. We highlight novel aspects of this communication mechanism, offering a valuable insight into such pathways in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KS, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LR (2010) Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 28(1):39–52

    Article  CAS  PubMed  Google Scholar 

  2. Paschon V, Higa GS, Resende RR, Britto LR, Kihara AH (2012) Blocking of connexin-mediated communication promotes neuroprotection during acute degeneration induced by mechanical trauma. PLoS One 7(9):e45449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Theis M, Sohl G, Eiberger J, Willecke K (2005) Emerging complexities in identity and function of glial connexins. Trends Neurosci 28(4):188–195

    Article  CAS  PubMed  Google Scholar 

  4. Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6(3):191–200

    Article  PubMed  CAS  Google Scholar 

  5. Corriden R, Insel PA (2010) Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 3(104):re1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Le-Corronc H, Rigo JM, Branchereau P, Legendre P (2011) GABA (A) receptor and glycine receptor activation by paracrine/autocrine release of endogenous agonists: more than a simple communication pathway. Mol Neurobiol 44(1):28–52

    Article  CAS  PubMed  Google Scholar 

  7. Ogorevc E, Kralj-Iglic V, Veranic P (2013) The role of extracellular vesicles in phenotypic cancer transformation. Radiol Oncol 47(3):197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vader P, Breakefield XO, Wood MJ (2014) Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 20(7):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflammation 11(1):68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581

    Article  CAS  PubMed  Google Scholar 

  11. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci CMLS 68(16):2667–2688

    Article  CAS  PubMed  Google Scholar 

  12. Sustar V, Bedina-Zavec A, Stukelj R, Frank M, Ogorevc E, Jansa R, Mam K, Veranic P, Kralj-Iglic V (2011) Post-prandial rise of microvesicles in peripheral blood of healthy human donors. Lipids Health Dis 10:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow and Metab 33(11):1711–1715

    Article  CAS  Google Scholar 

  14. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841(1):108–120

    Article  CAS  PubMed  Google Scholar 

  15. Faure C, Nallet F, Roux D, Milner ST, Gauffre F, Olea D, Lambert O (2006) Modeling leakage kinetics from multilamellar vesicles for membrane permeability determination: application to glucose. Biophys J 91(12):4340–4349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y, Sadoul R (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 46(2):409–418

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Weng Z, Mendrick DL, Shi Q (2014) Circulating extracellular vesicles as a potential source of new biomarkers of drug-induced liver injury. Toxicol Lett 225(3):401–406

    Article  CAS  PubMed  Google Scholar 

  18. Cheng L, Sun X, Scicluna BJ, Coleman BM, Hill AF (2013) Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int 86(2):433–444

  19. Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA (2004) Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64(19):7045–7049

    Article  CAS  PubMed  Google Scholar 

  20. Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, Scheynius A, Gabrielsson S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22(4):578–583

    Article  CAS  PubMed  Google Scholar 

  21. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M et al (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42(11):7290–7304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Melnik BC, John SM, Schmitz G (2014) Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 12(1):43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R (2008) Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull 31(6):1059–1062

    Article  CAS  PubMed  Google Scholar 

  24. Fruhbeis C, Frohlich D, Kramer-Albers EM (2012) Emerging roles of exosomes in neuron-glia communication. Front Physiol 3:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Von Bartheld CS, Altick AL (2011) Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 93(3):313–340

    Article  Google Scholar 

  26. Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H, Nave KA, Schild H, Trotter J (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin Appl 1(11):1446–1461

    Article  PubMed  CAS  Google Scholar 

  27. Cai J, Han Y, Ren H, Chen C, He D, Zhou L, Eisner GM, Asico LD, Jose PA, Zeng C (2013) Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol 5(4):227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Valencia K, Luis-Ravelo D, Bovy N, Anton I, Martinez-Canarias S, Zandueta C, Ormazabal C, Struman I, Tabruyn S, Rebmann V et al (2014) miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol 8(3):689–703

    Article  CAS  PubMed  Google Scholar 

  29. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D et al (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835

    Article  CAS  PubMed  Google Scholar 

  30. Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, Vidal M, Amson R, Telerman A (2008) Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ 15(11):1723–1733

    Article  CAS  PubMed  Google Scholar 

  31. Eirin A, Riester SM, Zhu XY, Tang H, Evans JM, O’Brien D, van Wijnen AJ, Lerman LO (2014) MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene 551(1):55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  33. Pigati L, Yaddanapudi SC, Iyengar R, Kim DJ, Hearn SA, Danforth D, Hastings ML, Duelli DM (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5(10):e13515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Osman A (2012) MicroRNAs in health and disease—basic science and clinical applications. Clin Lab 58(5–6):393–402

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Liao Y, Wang D, He Y, Cao D, Zhang F, Dou K (2011) Altered expression levels of miRNAs in serum as sensitive biomarkers for early diagnosis of traumatic injury. J Cell Biochem 112(9):2435–2442

    Article  CAS  PubMed  Google Scholar 

  36. Muro EM, Mah N, Andrade-Navarro MA (2011) Functional evidence of post-transcriptional regulation by pseudogenes. Biochimie 93(11):1916–1921

    Article  CAS  PubMed  Google Scholar 

  37. Hayes CN, Akamatsu S, Tsuge M, Miki D, Akiyama R, Abe H, Ochi H, Hiraga N, Imamura M, Takahashi S et al (2012) Hepatitis B virus-specific miRNAs and Argonaute2 play a role in the viral life cycle. PLoS One 7(10):e47490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Decembrini S, Bressan D, Vignali R, Pitto L, Mariotti S, Rainaldi G, Wang X, Evangelista M, Barsacchi G, Cremisi F (2009) MicroRNAs couple cell fate and developmental timing in retina. Proc Natl Acad Sci U S A 106(50):21179–21184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song J, Hu B, Qu H, Bi C, Huang X, Zhang M (2012) Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells. PLoS One 7(10):e47657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23(1):34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Da Costa Martins PA, De Windt LJ (2012) Targeting microRNA targets. Circ Res 111(5):506–508

    Article  PubMed  CAS  Google Scholar 

  42. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687

    Article  CAS  PubMed  Google Scholar 

  44. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    CAS  PubMed  Google Scholar 

  45. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zinovyev A, Morozova N, Gorban AN, Harel-Belan A (2013) Mathematical modeling of microRNA-mediated mechanisms of translation repression. Adv Exp Med Biol 774:189–224

    Article  CAS  PubMed  Google Scholar 

  47. Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T, Suzuki T (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly (A) polymerase GLD-2. Genes Dev 23(4):433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kai ZS, Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17(1):5–10

    Article  CAS  PubMed  Google Scholar 

  49. de Sousa E, Walter LT, Higa GS, Casado OA, Kihara AH (2013) Developmental and functional expression of miRNA-stability related genes in the nervous system. PLoS One 8(5):e56908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kinjo ER, Higa GS, de Sousa E, Casado OA, Damico MV, Britto LR, Kihara AH (2013) A possible new mechanism for the control of miRNA expression in neurons. Exp Neurol 248:546–558

  51. Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, Doronin S, Mathias RT, Robinson RB, Rosen MR, Cohen IS et al (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568(Pt 2):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brink PR, Valiunas V, Gordon C, Rosen MR, Cohen IS (2012) Can gap junctions deliver? Biochim Biophys Acta 1818(8):2076–2081

    Article  CAS  PubMed  Google Scholar 

  53. Higa GS, de Sousa E, Walter LT, Kinjo ER, Resende RR, Kihara AH (2014) MicroRNAs in neuronal communication. Mol Neurobiol 49(3):1309–1326

    CAS  PubMed  Google Scholar 

  54. Stoorvogel W (2012) Functional transfer of microRNA by exosomes. Blood 119(3):646–648

    Article  CAS  PubMed  Google Scholar 

  55. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2(100):ra81

    Article  PubMed  Google Scholar 

  56. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ksiazek-Winiarek DJ, Kacperska MJ, Glabinski A (2013) MicroRNAs as novel regulators of neuroinflammation. Mediators Inflamm 2013:172351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gantier MP (2010) New perspectives in MicroRNA regulation of innate immunity. J Interf Cytokine Res off J Int Soc Interferon Cytokine Res 30(5):283–289

    Article  CAS  Google Scholar 

  60. Quinn SR, O’Neill LA (2011) A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 23(7):421–425

    Article  CAS  PubMed  Google Scholar 

  61. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103(33):12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ (2010) Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 285(50):38951–38960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1(2):135–145

    Article  CAS  PubMed  Google Scholar 

  64. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16(1):3–9

    Article  CAS  PubMed  Google Scholar 

  65. Miyake K (2007) Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19(1):3–10

    Article  CAS  PubMed  Google Scholar 

  66. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52(2):269–279

    Article  CAS  PubMed  Google Scholar 

  67. Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32(3):305–315

    Article  CAS  PubMed  Google Scholar 

  68. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  69. Benias PC, Gopal K, Bodenheimer H Jr, Theise ND (2012) Hepatic expression of toll-like receptors 3, 4, and 9 in primary biliary cirrhosis and chronic hepatitis C. Clinics Res Hepatol Gastroenterol 36(5):448–454

    Article  CAS  Google Scholar 

  70. Gerondakis S, Grumont RJ, Banerjee A (2007) Regulating B-cell activation and survival in response to TLR signals. Immunol Cell Biol 85(6):471–475

    Article  CAS  PubMed  Google Scholar 

  71. Iwamura C, Nakayama T (2008) Toll-like receptors in the respiratory system: their roles in inflammation. Curr Allergy Asthma Rep 8(1):7–13

    Article  CAS  PubMed  Google Scholar 

  72. Eriksson M, Meadows SK, Basu S, Mselle TF, Wira CR, Sentman CL (2006) TLRs mediate IFN-gamma production by human uterine NK cells in endometrium. J Immunol 176(10):6219–6224

    Article  CAS  PubMed  Google Scholar 

  73. Duan X, Kang E, Liu CY, Ming GL, Song H (2008) Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18(1):108–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sabroe I, Whyte MK (2007) Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation in respiratory disease. Biochem Soc Trans 35(Pt 6):1492–1495

    Article  CAS  PubMed  Google Scholar 

  75. Yoshimoto T, Nakanishi K (2006) Roles of IL-18 in basophils and mast cells. Allergol Int Off J Jpn Soc Allergol 55(2):105–113

    Article  CAS  Google Scholar 

  76. Gibson FC 3rd, Ukai T, Genco CA (2008) Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis. Front Biosci J Virtual libr 13:2041–2059

    Article  CAS  Google Scholar 

  77. Prehaud C, Megret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79(20):12893–12904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qi J, Buzas K, Fan H, Cohen JI, Wang K, Mont E, Klinman D, Oppenheim JJ, Howard OM (2011) Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol 186(11):6417–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mishra BB, Gundra UM, Teale JM (2008) Expression and distribution of Toll-like receptors 11–13 in the brain during murine neurocysticercosis. J Neuroinflammation 5:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, Rumio C (2009) Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem Off J Histochem Soc 57(11):1013–1023

    Article  CAS  Google Scholar 

  82. Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 107(25):11555–11560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber JR, Golenbock DT, Vartanian T (2006) A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 177(1):583–592

    Article  CAS  PubMed  Google Scholar 

  84. Taylor DL, Pirianov G, Holland S, McGinnity CJ, Norman AL, Reali C, Diemel LT, Gveric D, Yeung D, Mehmet H (2010) Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. J Neurosci Res 88(8):1632–1644

    CAS  PubMed  Google Scholar 

  85. Bsibsi M, Nomden A, van Noort JM, Baron W (2012) Toll-like receptors 2 and 3 agonists differentially affect oligodendrocyte survival, differentiation, and myelin membrane formation. J Neurosci Res 90(2):388–398

    Article  CAS  PubMed  Google Scholar 

  86. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175(7):4320–4330

    Article  CAS  PubMed  Google Scholar 

  87. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61(11):1013–1021

    Article  CAS  PubMed  Google Scholar 

  88. Carpentier PA, Begolka WS, Olson JK, Elhofy A, Karpus WJ, Miller SD (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49(3):360–374

    Article  PubMed  Google Scholar 

  89. El-Hage N, Podhaizer EM, Sturgill J, Hauser KF (2011) Toll-like receptor expression and activation in astroglia: differential regulation by HIV-1 Tat, gp120, and morphine. Immunol Invest 40(5):498–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cassiani-Ingoni R, Cabral ES, Lunemann JD, Garza Z, Magnus T, Gelderblom H, Munson PJ, Marques A, Martin R (2006) Borrelia burgdorferi induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol Exp Neurol 65(6):540–548

    Article  CAS  PubMed  Google Scholar 

  91. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190(1–2):28–33

    Article  CAS  PubMed  Google Scholar 

  92. Yoon HJ, Jeon SB, Kim IH, Park EJ (2008) Regulation of TLR2 expression by prostaglandins in brain glia. J Immunol 180(12):8400–8409

    Article  CAS  PubMed  Google Scholar 

  93. Suzuki M, Sugimoto Y, Ohsaki Y, Ueno M, Kato S, Kitamura Y, Hosokawa H, Davies JP, Ioannou YA, Vanier MT et al (2007) Endosomal accumulation of Toll-like receptor 4 causes constitutive secretion of cytokines and activation of signal transducers and activators of transcription in Niemann-Pick disease type C (NPC) fibroblasts: a potential basis for glial cell activation in the NPC brain. J Neurosci the Off J Soc Neurosci 27(8):1879–1891

    Article  CAS  Google Scholar 

  94. Du M, Butchi NB, Woods T, Peterson KE (2011) Poly-thymidine oligonucleotides mediate activation of murine glial cells primarily through TLR7, not TLR8. PLoS One 6(7):e22454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147(4):867–883

    Article  CAS  PubMed  Google Scholar 

  96. McCusker RH, Kelley KW (2013) Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol 216(Pt 1):84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Olivieri F, Rippo MR, Prattichizzo F, Babini L, Graciotti L, Recchioni R, Procopio AD (2013) Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing I A 10(1):11

    Article  PubMed  CAS  Google Scholar 

  98. Tsai SY, Segovia JA, Chang TH, Morris IR, Berton MT, Tessier PA, Tardif MR, Cesaro A, Bose S (2014) DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog 10(1):e1003848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Fang H, Ang B, Xu X, Huang X, Wu Y, Sun Y, Wang W, Li N, Cao X, Wan T (2014) TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell Mol Immunol 11(2):150–159

    Article  CAS  PubMed  Google Scholar 

  100. Peng Y, Zhang L (2014) Activation of the TLR1/2 pathway induces the shaping of the immune response status of peripheral blood leukocytes. Exp Ther Med 7(6):1708–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158(3):1007–1020

    Article  CAS  PubMed  Google Scholar 

  102. Kaczorowski DJ, Mollen KP, Edmonds R, Billiar TR (2008) Early events in the recognition of danger signals after tissue injury. J Leukoc Biol 83(3):546–552

    Article  CAS  PubMed  Google Scholar 

  103. Marsh BJ, Stevens SL, Hunter B, Stenzel-Poore MP (2009) Inflammation and the emerging role of the toll-like receptor system in acute brain ischemia. Stroke J Cereb Circ 40(3 Suppl):S34–S37

    Article  CAS  Google Scholar 

  104. Chotirmall SH, Low TB, Hassan T, Branagan P, Kernekamp C, Flynn MG, Gunaratnam C, McElvaney NG (2011) Cystic fibrosis, common variable immunodeficiency and Aspergers syndrome: an immunological and behavioural challenge. Ir J Med Sci 180(2):607–609

    Article  CAS  PubMed  Google Scholar 

  105. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364

    Article  PubMed  CAS  Google Scholar 

  106. Nada M, Ohnishi H, Tochio H, Kato Z, Kimura T, Kubota K, Yamamoto T, Kamatari YO, Tsutsumi N, Shirakawa M et al (2012) Molecular analysis of the binding mode of Toll/interleukin-1 receptor (TIR) domain proteins during TLR2 signaling. Mol Immunol 52(3–4):108–116

    Article  CAS  PubMed  Google Scholar 

  107. Ko MK, Saraswathy S, Parikh JG, Rao NA (2011) The role of TLR4 activation in photoreceptor mitochondrial oxidative stress. Invest Ophthalmol Vis Sci 52(8):5824–5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. He X, Jing Z, Cheng G (2014) MicroRNAs: new regulators of Toll-like receptor signalling pathways. Biomed Res Int 2014:945169

    PubMed  PubMed Central  Google Scholar 

  109. Fehniger TA (2013) Extracellular microRNAs turn on NK cells via TLR1. Blood 121(23):4612–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. He S, Chu J, Wu LC, Mao H, Peng Y, Alvarez-Breckenridge CA, Hughes T, Wei M, Zhang J, Yuan S et al (2013) MicroRNAs activate natural killer cells through Toll-like receptor signaling. Blood 121(23):4663–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nahid MA, Satoh M, Chan EK (2011) Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol 186(3):1723–1734

    Article  CAS  PubMed  Google Scholar 

  112. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106(8):2735–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ et al (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109(31):E2110–E2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li Y, Shi X (2013) MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 10(1):65–71

    Article  CAS  PubMed  Google Scholar 

  115. Fabbri M, Paone A, Calore F, Galli R, Croce CM (2013) A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol 10(2):169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tan JY, Marques AC (2014) The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. Adv Genet 85:149–199

    CAS  PubMed  Google Scholar 

  117. Grasso M, Piscopo P, Confaloni A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 19(5):6891–6910

    Article  PubMed  CAS  Google Scholar 

  118. Drouin-Ouellet J, Cicchetti F (2012) Inflammation and neurodegeneration: the story ‘retolled’. Trends Pharmacol Sci 33(10):542–551

    Article  CAS  PubMed  Google Scholar 

  119. Ulrich H, do Nascimento IC, Bocsi J, Tarnok A (2014) Immunomodulation in stem cell differentiation into neurons and brain repair. Stem Cell Rev (in press)

  120. Shastri A, Bonifati DM, Kishore U (2013) Innate immunity and neuroinflammation. Mediators Inflamm 2013:342931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Hayward CP, Moffat KA, Graf L (2014) Technological advances in diagnostic testing for von Willebrand disease: new approaches and challenges. Int J Lab Hematol 36(3):334–340

    Article  CAS  PubMed  Google Scholar 

  122. Noelker C, Morel L, Lescot T, Osterloh A, Alvarez-Fischer D, Breloer M, Henze C, Depboylu C, Skrzydelski D, Michel PP et al (2013) Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease. Sci Rep 3:1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, Schulz-Schaeffer W, Fassbender K (2009) Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30(5):759–768

    Article  CAS  PubMed  Google Scholar 

  124. Stridh L, Mottahedin A, Johansson ME, Valdez RC, Northington F, Wang X, Mallard C (2013) Toll-like receptor-3 activation increases the vulnerability of the neonatal brain to hypoxia-ischemia. J Neurosci Off J Soc Neurosci 33(29):12041–12051

    Article  CAS  Google Scholar 

  125. Guo L, Duggan J, Cordeiro MF (2010) Alzheimer’s disease and retinal neurodegeneration. Curr Alzheimer Res 7(1):3–14

    Article  CAS  PubMed  Google Scholar 

  126. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    Article  CAS  PubMed  Google Scholar 

  127. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103(30):11172–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vingtdeux V, Hamdane M, Loyens A, Gele P, Drobeck H, Begard S, Galas MC, Delacourte A, Beauvillain JC, Buee L et al (2007) Alkalizing drugs induce accumulation of amyloid precursor protein by-products in luminal vesicles of multivesicular bodies. J Biol Chem 282(25):18197–18205

    Article  CAS  PubMed  Google Scholar 

  129. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Frank S, Copanaki E, Burbach GJ, Muller UC, Deller T (2009) Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett 453(1):41–44

    Article  CAS  PubMed  Google Scholar 

  131. Richard KL, Filali M, Prefontaine P, Rivest S (2008) Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1–42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci 28(22):5784–5793

    Article  CAS  PubMed  Google Scholar 

  132. Yu X, Wang Q, Lin Y, Zhao J, Zhao C, Zheng J (2012) Structure, orientation, and surface interaction of Alzheimer amyloid-beta peptides on the graphite. Langmuir ACS J Surf colloid 28(16):6595–6605

    Article  CAS  Google Scholar 

  133. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5(10):e13247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer’s Dis JAD 14(1):27–41

    Article  CAS  PubMed  Google Scholar 

  135. Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 8(7):e69807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nagpal N, Kulshreshtha R (2014) miR-191: an emerging player in disease biology. Front Genet 5:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Hebert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, Sergeant N, Buee L, De Strooper B (2010) Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 19(20):3959–3969

    Article  CAS  PubMed  Google Scholar 

  138. Lang AE, Lozano AM (1998) Parkinson’s disease. Second of two parts. N Engl J Med 339(16):1130–1143

    Article  CAS  PubMed  Google Scholar 

  139. Lees AJ (2009) The Parkinson chimera. Neurology 72(7 Suppl):S2–S11

    Article  PubMed  Google Scholar 

  140. Reynolds AD, Kadiu I, Garg SK, Glanzer JG, Nordgren T, Ciborowski P, Banerjee R, Gendelman HE (2008) Nitrated alpha-synuclein and microglial neuroregulatory activities. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 3(2):59–74

    Article  Google Scholar 

  141. Reynolds AD, Glanzer JG, Kadiu I, Ricardo-Dukelow M, Chaudhuri A, Ciborowski P, Cerny R, Gelman B, Thomas MP, Mosley RL et al (2008) Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem 104(6):1504–1525

    Article  CAS  PubMed  Google Scholar 

  142. Chang C, Lang H, Geng N, Wang J, Li N, Wang X (2013) Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD. Neurosci Lett 548:190–195

    Article  CAS  PubMed  Google Scholar 

  143. Maciotta S, Meregalli M, Torrente Y (2013) The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7:265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106(31):13052–13057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Beraud D, Twomey M, Bloom B, Mittereder A, Ton V, Neitzke K, Chasovskikh S, Mhyre TR, Maguire-zeiss KA (2011) Alpha-synuclein alters toll-like receptor expression. Front Neurosci 5:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Beraud E, Chandy KG (2011) Therapeutic potential of peptide toxins that target ion channels. Inflamm Allergy Drug Targets 10(5):322–342

    Article  CAS  PubMed  Google Scholar 

  147. Lomen-Hoerth C (2008) Amyotrophic lateral sclerosis from bench to bedside. Semin Neurol 28(2):205–211

    Article  PubMed  Google Scholar 

  148. Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103(43):16021–16026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gomes C, Keller S, Altevogt P, Costa J (2007) Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett 428(1):43–46

    Article  CAS  PubMed  Google Scholar 

  150. Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, Chau BN, Wu GF, Miller TM (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22(20):4127–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Parisi C, Arisi I, D’Ambrosi N, Storti AE, Brandi R, D’Onofrio M, Volonte C (2013) Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death Dis 4:e959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhou F, Guan Y, Chen Y, Zhang C, Yu L, Gao H, Du H, Liu B, Wang X (2013) miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice. Int J Clin Exp Pathol 6(9):1826–1838

    PubMed  PubMed Central  Google Scholar 

  153. Sta M, Sylva-Steenland RM, Casula M, de Jong JM, Troost D, Aronica E, Baas F (2011) Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol Dis 42(3):211–220

    Article  CAS  PubMed  Google Scholar 

  154. Casula M, Iyer AM, Spliet WG, Anink JJ, Steentjes K, Sta M, Troost D, Aronica E (2011) Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience 179:233–243

    Article  CAS  PubMed  Google Scholar 

  155. Zhao W, Beers DR, Henkel JS, Zhang W, Urushitani M, Julien JP, Appel SH (2010) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58(2):231–243

    Article  PubMed  PubMed Central  Google Scholar 

  156. Teasell R, Hussein N, McClure A, Meyer M (2014) Stroke: more than a ‘brain attack’. Int J Stroke Off J Int Stroke Soc 9(2):188–190

    Article  Google Scholar 

  157. Ouyang Q, Zhou W, Zhang CM (2007) The key of increasing the therapeutic effect of scalp acupuncture on hemiplegia due to stroke. Zhongguo zhen jiu Chin Acupunct Moxibustion 27(10):773–776

    Google Scholar 

  158. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D (2014) microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One 9(6):e99283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Dharap A, Bowen K, Place R, Li LC, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb blood flow Metab Off J Int Soc Cereb Blood Flow Metab 29(4):675–687

    Article  CAS  Google Scholar 

  160. Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, Park KH, Bae EK, Kim M, Lee SK et al (2010) MicroRNAs induced during ischemic preconditioning. Stroke J Cereb Circulation 41(8):1646–1651

    Article  CAS  Google Scholar 

  161. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke J Cereb Circulation 39(3):959–966

    Article  CAS  Google Scholar 

  162. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G, Sharp FR (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30(1):92–101

    Article  PubMed  CAS  Google Scholar 

  163. Weng Q, Zhang J, Cao J, Xia Q, Wang D, Hu Y, Sheng R, Wu H, Zhu D, Zhu H et al (2011) Q39, a quinoxaline 1,4-Di-N-oxide derivative, inhibits hypoxia-inducible factor-1alpha expression and the Akt/mTOR/4E-BP1 signaling pathway in human hepatoma cells. Invest New Drugs 29(6):1177–1187

    Article  CAS  PubMed  Google Scholar 

  164. Chan YC, Banerjee J, Choi SY, Sen CK (2012) miR-210: the master hypoxamir. Microcirculation 19(3):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zeng J, Sun Y, Jiang L (2011) On-line ‘automatic pilot’ training for hand and arm motor rehabilitation after stroke. Med Hypotheses 76(2):197–198

    Article  PubMed  Google Scholar 

  166. Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, Lurje G, Labonte MJ, Wilson PM, Gordon MA et al (2011) A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol Off J Eur Soc Med Oncol ESMO 22(1):104–109

    Article  CAS  Google Scholar 

  167. Diao S, Zhang JF, Wang H, He ML, Lin MC, Chen Y, Kung HF (2010) Proteomic identification of microRNA-122a target proteins in hepatocellular carcinoma. Proteomics 10(20):3723–3731

    Article  CAS  PubMed  Google Scholar 

  168. Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184(12):6773–6781

    Article  CAS  PubMed  Google Scholar 

  169. Li Y, Liu Z, Xin H, Chopp M (2014) The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia 62(1):1–16

    Article  PubMed  Google Scholar 

  170. Fadakar K, Dadkhahfar S, Esmaeili A, Rezaei N (2014) The role of Toll-like receptors (TLRs) in stroke. Rev Neurosci 25(5):699–712

  171. Gesuete R, Kohama SG, Stenzel-Poore MP (2014) Toll-like receptors and ischemic brain injury. J Neuropathol Exp Neurol 73(5):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM (2009) Toll-like receptors in ischemia-reperfusion injury. Shock 32(1):4–16

    Article  CAS  PubMed  Google Scholar 

  173. Mkaddem SB, Bens M, Vandewalle A (2010) Differential activation of Toll-like receptor-mediated apoptosis induced by hypoxia. Oncotarget 1(8):741–750

    Article  PubMed  PubMed Central  Google Scholar 

  174. Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, Conrad VK, van den Dungen NN, Simon RP, Stenzel-Poore MP (2012) Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke J Cereb Circ 43(5):1383–1389

    Article  CAS  Google Scholar 

  175. Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167(5):2887–2894

    Article  CAS  PubMed  Google Scholar 

  176. Wang YC, Lin S, Yang QW (2011) Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation 8:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ (2007) Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353(2):509–514

    Article  CAS  PubMed  Google Scholar 

  178. Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359(3):574–579

    Article  CAS  PubMed  Google Scholar 

  179. Vartanian K, Stenzel-Poore M (2010) Toll-like receptor tolerance as a mechanism for neuroprotection. Transl Stroke Res 1(4):252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M, Schapira AH, Simons JP, El-Andaloussi S, Alvarez-Erviti L (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 29(12):1476–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kawikova I, Askenase PW (2014) Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res S0006-8993(14)01343–2

Download references

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, #2014/16711-6) and Universidade Federal do ABC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vera Paschon or Alexandre Hiroaki Kihara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschon, V., Takada, S.H., Ikebara, J.M. et al. Interplay Between Exosomes, microRNAs and Toll-Like Receptors in Brain Disorders. Mol Neurobiol 53, 2016–2028 (2016). https://doi.org/10.1007/s12035-015-9142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9142-1

Keywords

Navigation