Skip to main content

Advertisement

Log in

Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Epidemiological studies have suggested a differential response, males versus female, in stroke incidence and prognosis. These divergences in brain response after damage are based mostly on hormonal differences. To date, estradiol and progesterone administered independently have demonstrated neuroprotection after ischemia in animal models. Nonetheless, contradictory results were revealed using a combined administration. In order to evaluate the effects of combinatorial treatment administered after ischemia induction, we used two different approaches: in vivo and in vitro models. Male rats which underwent permanent middle cerebral artery occlusion were treated with a combination of estradiol/progesterone at 6, 24 and 48 h after injury and sacrificed at 54 h post-ischemia. The rat brains were evaluated for reactive gliosis, NeuN-positive neurons, levels of synapse-associated proteins and activity levels of PI3K/Akt/GSK3/β-catenin survival pathway. Also, primary cortical neurons were subjected to oxygen and glucose deprivation for 17 h and returned to a normal environment in the presence of estradiol or estradiol/progesterone. Cell viability was evaluated, and activity levels of the PI3K/Akt/GSK3/β-catenin pathway. Our results indicate that some beneficial effects of estradiol were abolished in the presence of progesterone, particularly in the cerebral cortex (core). However, the combinatorial treatment showed positive effects in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2013) Heart Disease and Stroke Statistics—2013 Update A Report From the American Heart Association. Circulation 127:e6–e245. doi:10.1161/CIR.0b013e31828124ad

    Article  PubMed  Google Scholar 

  2. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397. doi:10.1016/S0166-2236(99)01401-0

    Article  CAS  PubMed  Google Scholar 

  3. Hossmann K-A (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26(7):1055–1081. doi:10.1007/s10571-006-9008-1

    Article  Google Scholar 

  4. Green A, Odergren T, Ashwood T (2003) Animal models of stroke: do they have value for discovering neuroprotective agents? Trends Pharmacol Sci 24(8):402–408

    Article  CAS  Google Scholar 

  5. Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol. doi:10.1155/2011/464701

    Google Scholar 

  6. Alkayed N, Harukuni I, Kimes A, London E, Traystman R, Hurn P (1998) Gender-linked brain injury in experimental stroke. Stroke 29:159–165

    Article  CAS  PubMed  Google Scholar 

  7. Takaba H, Fukuda K, Yao H (2004) Substrain differences, gender, and age of spontaneously hypertensive rats critically determine infarct size produced by distal middle cerebral artery occlusion. Cell Mol Neurobiol 24(5):589–598

    Article  PubMed  Google Scholar 

  8. Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 113:6–39. doi:10.1016/j.pneurobio.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  9. Pérez-Alvarez MJ, Wandosell F (2013) In: Palmeri Rand Grimaudo S (ed) Estradiol in CNS: role in neurodegeneration. Estradiol: synthesis, health effects and drug interaction, 1st edn. Nova, New York, pp 35–68

  10. Schumacher M, Guennoun R, Robert F, Carelli C, Gago N, Ghoumari A, Gonzalez Deniselle MC, Gonzalez SL, Ibanez C, Labombarda F, Coirini H, Baulieu E-E, De Nicola AF (2004) Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Hormon IGF Res 14:18–33. doi:10.1016/j.ghir.2004.03.007

    Article  Google Scholar 

  11. Azcoitia I, Arevalo MA, De Nicola AF, Garcia-Segura LM (2011) Neuroprotective actions of estradiol revisited. Trends Endocrinol Metab 22(12):7. doi:10.1016/j.tem.2011.08.002

    Article  Google Scholar 

  12. McCullough L, Hurn P (2003) Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab 14(5):228–235. doi:10.1016/S1043-2760(03)00076-6

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Alvarez M, Maza M, Anton M, Ordonez L, Wandosell F (2012) Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia. J Neuroinflammation 9(1):157. doi:10.1186/1742-2094-9-157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jia J, Guan D, Zhu W, Alkayed NJ, Wang MM, Hua Z, Xua Y (2009) Estrogen inhibits Fas-mediated apoptosis in experimental stroke. Exp Neurol 215:5. doi:10.1016/j.expneurol.2008.09.015

    Article  Google Scholar 

  15. Singer CA, Rogers KL, Strickland TM, Dorsa DM (1996) Estrogen protects primary cortical neurons from glutamate toxicity. Neurosci Lett 212(1):13–16. doi:10.1016/0304-3940(96)12760-9

    Article  CAS  PubMed  Google Scholar 

  16. Stein DG (2008) Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev 57(2):386–397

    Article  CAS  PubMed  Google Scholar 

  17. Baudry M, Bi X, Aguirre C (2013) Progesterone–estrogen interactions in synaptic plasticity and neuroprotection. Neuroscience 239:14. doi:10.1016/j.neuroscience.2012.10.051

    Article  Google Scholar 

  18. Wieloch T, Nikolich K (2006) Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol 16(3):258–264. doi:10.1016/j.conb.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  19. Cesca F, Baldelli P, Valtorta F, Benfenati F (2010) The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91(4):313–348

    Article  CAS  PubMed  Google Scholar 

  20. Ohtani-Kaneko R, Iwafuchi M, Iwakura T, Muraoka D, Yokosuka M, Shiga T, Watanabe C (2010) Effects of estrogen on synapsin I distribution in developing hypothalamic neurons. Neurosci Res 66(2):180–188. doi:10.1016/j.neures.2009.10.012

    Article  CAS  PubMed  Google Scholar 

  21. Sato K, Akaishi T, Matsuki N, Ohno Y, Nakazawa K (2007) β-Estradiol induces synaptogenesis in the hippocampus by enhancing brain-derived neurotrophic factor release from dentate gyrus granule cells. Brain Res 1150:108–120. doi:10.1016/j.brainres.2007.02.093

    Article  CAS  PubMed  Google Scholar 

  22. Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM, Pike CJ (2007) Progesterone and estrogen regulate alzheimer-like neuropathology in female 3xTg-AD mice. J Neurosci 27(48):13357–13365. doi:10.1523/jneurosci. 2718-07.2007

    Article  CAS  PubMed  Google Scholar 

  23. Jayaraman A, Pike CJ (2014) Differential effects of synthetic progestagens on neuron survival and estrogen neuroprotection in cultured neurons. Mol Cell Endocrinol 384(1–2):12. doi:10.1016/j.mce.2014.01.003

    Google Scholar 

  24. Toung TJ, Chen T-Y, Littleton-Kearney MT, Hurn PD, Murphy SJ (2004) Effects of combined estrogen and progesterone on brain infarction in reproductively senescent female rats. J Cereb Blood Flow Metab 24(10):1160–1166

  25. Dang J, Mitkari B, Kipp M, Beyer C (2011) Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain Behav Immun 25(4):715–726. doi:10.1016/j.bbi.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  26. Cai W, Zhu Y, Furuya K, Li Z, Sokabe M, Chen L (2008) Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage. Neuropharmacology 55(2):127–138

    Article  CAS  PubMed  Google Scholar 

  27. Jiang N, Chopp M, Stein D, Feit H (1996) Progesterone is neuroprotective after transient middle cerebral artery occlusion in male rats. Brain Res 735(1):101–107

    Article  CAS  PubMed  Google Scholar 

  28. Yrjänheikki J, Koistinaho J, Kettunen M, Kauppinen RA, Appel K, Hüll M, Fiebich BL (2005) Long-term protective effect of atorvastatin in permanent focal cerebral ischemia. Brain Res 1052(2):174–179

    Article  PubMed  Google Scholar 

  29. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, San Diego, California

    Google Scholar 

  30. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  31. Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM (2013) Gonadal hormones and the control of reactive gliosis. Horm Behav 63(2):216–221. doi:10.1016/j.yhbeh.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  32. Costain WJ, Rasquinha I, Sandhu JK, Rippstein P, Zurakowski B, Slinn J, MacManus JP, Stanimirovic DB (2007) Cerebral ischemia causes dysregulation of synaptic adhesion in mouse synaptosomes. J Cereb Blood Flow Metab 28(1):99–110

  33. Ishrat T, Sayeed I, Atif F, Hua F, Stein DG (2012) Progesterone is neuroprotective against ischemic brain injury through its effects on the phosphoinositide 3-kinase/protein kinase B signaling pathway. Neuroscience 210:442–450. doi:10.1016/j.neuroscience.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johann S, Beyer C (2013) Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J Steroid Biochem Mol Biol 137:71–81. doi:10.1016/j.jsbmb.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  35. Aguirre C, Jayaraman A, Pike C, Baudry M (2010) Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-β. J Neurochem 115(5):1277–1287. doi:10.1111/j.1471-4159.2010.07038.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ozacmak VH, Sayan H (2009) The effects of 17β estradiol, 17α estradiol and progesterone on oxidative stress biomarkers in ovariectomized female rat brain subjected to global cerebral ischemia. Physiol Res 58(6):909–912

  37. Toung TJK, Traystman RJ, Hurn PD (1998) Estrogen-mediated neuroprotection after experimental stroke in male rats. Stroke 29:1666–1670

    Article  CAS  PubMed  Google Scholar 

  38. Ulbrich C, Zendedel A, Habib P, Kipp M, Beyer C, Dang J (2012) Long-term cerebral cortex protection and behavioral stabilization by gonadal steroid hormones after transient focal hypoxia. J Steroid Biochem Mol Biol 131(1–2):10–16. doi:10.1016/j.jsbmb.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  39. Jung-Testas I, Do Thi A, Koenig H, Désarnaud F, Shazand K, Schumacher M, Baulieu EE (1999) Progesterone as a neurosteroid: synthesis and actions in rat glial cells. J Steroid Biochem Mol Biol 69(1–6):97–107. doi:10.1016/S0960-0760(98)00149-6

    Article  CAS  PubMed  Google Scholar 

  40. Pawlak J, Karolczak M, Krust A, Chambon P, Beyer C (2005) Estrogen receptor-α is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia 50(3):270–275. doi:10.1002/glia.20162

    Article  PubMed  Google Scholar 

  41. Habib P, Dreymueller D, Ludwig A, Beyer C, Dang J (2013) Sex steroid hormone-mediated functional regulation of microglia-like BV-2 cells during hypoxia. J Steroid Biochem Mol Biol 138:195–205. doi:10.1016/j.jsbmb.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  42. Spruston N, Lübke J, Frotscher M (1997) Interneurons in the stratum lucidum of the rat hippocampus: an anatomical and electrophysiological characterization. J Comp Neurol 385(3):427–440

    Article  CAS  PubMed  Google Scholar 

  43. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 Maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127(1):125–137

    Article  CAS  PubMed  Google Scholar 

  44. Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J Comp Neurol 388(4):507–525. doi:10.1002/(sici)1096-9861(19971201)388:4<507::aid-cne1>3.0.co;2-6

    Article  CAS  PubMed  Google Scholar 

  45. Kato J, Hirata S, Nozawa A, Yamada-Mouri N (1994) Gene expression of progesterone receptor isoforms in the rat brain. Horm Behav 28(4):454–463. doi:10.1006/hbeh.1994.1043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of Lab 206 at the Centro de Biología Molecular “Severo Ochoa” (CBM-SO) for thoughtful discussions during the preparation of this manuscript. This work was supported in part by grants from the CIBERNED (an initiative of ISCIII), the Plan Nacional DGCYT [SAF2012-39148-C03-01], and EU-FP7-2009-CT222887 and the Autonomous Government of Madrid (S20/BMD-2331). In addition CBM-SO was supported by an Institutional grant from the ‘Fundación Areces”.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Wandosell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Alvarez, M.J., Mateos, L., Alonso, A. et al. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol 52, 1690–1703 (2015). https://doi.org/10.1007/s12035-014-8963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8963-7

Keywords

Navigation