Skip to main content

Advertisement

Log in

From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca2, glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytryptamine

Abeta42:

Amyloid beta42

Ach:

Acetylcholine

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

CB1 :

Cannabinoid type one

CGNs:

Cerebellar granule cells

CNS:

Central nervous system

COX-2:

Cyclooxygenase-2

EAE:

Experimental autoimmune encephalomyelitis

iNOS:

Inducible nitric oxide synthase

MAPK:

Mitogen-activated kinase

mCPBG:

Meta-chlorophenylbiguanide

MLA:

Methyllycaconitine citrate

MS:

Multiple sclerosis

MWM:

Morris Water Maze

NF-kB:

Nuclear factor-kappa B

OA:

Activated osteoarthritis

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor-alpha

α7nAchR:

Alpha7 nicotinic acetylcholine receptor

References

  1. Cloez-Tayarani I (2006) Serotonin as a modulator of immune function: an overview. Curr Immunol Rev 2(1):27–35. doi:10.2174/157339506775471893

    Article  CAS  Google Scholar 

  2. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254(5030):432–437. doi:10.1126/science.1718042

    Article  CAS  PubMed  Google Scholar 

  3. Thompson AJ, Lummis SCR (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets 11(4):527–540. doi:10.1517/14728222.11.4.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barnes NM, Hales TG, Lummis SCR, Peters JA (2009) The 5-HT3 receptor—the relationship between structure and function. Neuropharmacology 56(1):273–284. doi:10.1016/j.neuropharm.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  5. Fiebich BL, Akundi RS, Seidel M, Geyer V, Haus U, Muller W, Stratz T, Candelario-Jalil E (2004) Expression of 5-HT3A receptors in cells of the immune system. Scand J Rheumatol Suppl 119:9–11. doi:10.1080/03009740410006952

    Article  CAS  PubMed  Google Scholar 

  6. Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci U S A 90(4):1430–1434. doi:10.1073/pnas.90.4.1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson AJ, Lummis SC (2006) 5-HT3 receptors. Curr Pharm Des 12(28):3615–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faerber L, Drechsler S, Ladenburger S, Gschaidmeier H, Fischer W (2007) The neuronal 5-HT3 receptor network after 20 years of research—evolving concepts in management of pain and inflammation. Eur J Pharmacol 560(1):1–8. doi:10.1016/j.ejphar.2007.01.028

    Article  CAS  PubMed  Google Scholar 

  9. Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L, Breitner JC, Cache County Study I (2002) Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology 59(6):880–886. doi:10.1212/WNL.59.6.880

    Article  CAS  PubMed  Google Scholar 

  10. Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M (2005) Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304(1):91–104. doi:10.1016/j.yexcr.2004.09.032

    Article  CAS  PubMed  Google Scholar 

  11. Campbell VA, Gowran A (2007) Alzheimer’s disease; taking the edge off with cannabinoids? Br J Pharmacol 152(5):655–662. doi:10.1038/sj.bjp.0707446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tohgi H, Abe T, Takahashi S, Kimura M, Takahashi J, Kikuchi T (1992) Concentrations of serotonin and its related substances in the cerebrospinal fluid in patients with Alzheimer type dementia. Neurosci Lett 141(1):9–12. doi:10.1016/0304-3940(92)90322-X

    Article  CAS  PubMed  Google Scholar 

  13. Maura G, Andrioli GC, Cavazzani P, Raiteri M (1992) 5-Hydroxytryptamine3 receptors sited on cholinergic axon terminals of human cerebral cortex mediate inhibition of acetylcholine release. J Neurochem 58(6):2334–2337. doi:10.1111/j.1471-4159.1992.tb10983.x

    Article  CAS  PubMed  Google Scholar 

  14. Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59(4):360–417. doi:10.1124/pr.59.07103

    Article  CAS  PubMed  Google Scholar 

  15. Ohno M, Watanabe S (1997) Differential effects of 5-HT3 receptor antagonism on working memory failure due to deficiency of hippocampal cholinergic and glutamatergic transmission in rats. Brain Res 762(1–2):211–215. doi:10.1016/S0006-8993(97)00448-4

    Article  CAS  PubMed  Google Scholar 

  16. Carli M, Luschi R, Samanin R (1997) Dose-related impairment of spatial learning by intrahippocampal scopolamine: antagonism by ondansetron, a 5-HT3 receptor antagonist. Behav Brain Res 82(2):185–194. doi:10.1016/S0166-4328(97)80988-6

    Article  CAS  PubMed  Google Scholar 

  17. Waeber C, Hoyer D, Palacios JM (1989) 5-Hydroxytryptamine3 receptors in the human brain: autoradiographic visualization using [3H]ICS 205-930. Neuroscience 31(2):393–400. doi:10.1016/0306-4522(89)90382-5

    Article  CAS  PubMed  Google Scholar 

  18. Boast C, Bartolomeo AC, Morris H, Moyer JA (1999) 5HT antagonists attenuate MK801-impaired radial arm maze performance in rats. Neurobiol Learn Mem 71(3):259–271. doi:10.1006/nlme.1998.3886

    Article  CAS  PubMed  Google Scholar 

  19. Fuentealba RA, Farias G, Scheu J, Bronfman M, Marzolo MP, Inestrosa NC (2004) Signal transduction during amyloid-β-peptide neurotoxicity: role in Alzheimer disease. Brain Res Rev 47(1–3):275–289. doi:10.1016/j.brainresrev.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  20. Ju Yeon B, Yeon Hee S (2005) Blockade of 5-HT3 receptor with MDL72222 and Y25130 reduces β-amyloid protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Eur J Pharmacol 520(1–3):12–21. doi:10.1016/j.ejphar.2005.07.021

    Article  Google Scholar 

  21. Rahimian R, Fakhfouri G, Ejtemaei Mehr S, Ghia J-E, Genazzani AA, Payandemehr B, Dehpour AR, Mousavizadeh K, Lim D (2013) Tropisetron attenuates amyloid-beta-induced inflammatory and apoptotic responses in rats. Eur J Clin Investig 43(10):1039–1051. doi:10.1111/eci.12141

    Article  CAS  Google Scholar 

  22. Medeiros R, Prediger RDS, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB (2007) Connecting TNF-α signaling pathways to inos expression in a mouse model of alzheimer’s disease: relevance for the behavioral and synaptic deficits induced by amyloid β protein. J Neurosci 27(20):5394–5404. doi:10.1523/jneurosci. 5047-06.2007

    Article  CAS  PubMed  Google Scholar 

  23. Medeiros R, Figueiredo CP, Pandolfo P, Duarte FS, Prediger RDS, Passos GF, Calixto JB (2010) The role of TNF-α signaling pathway on COX-2 upregulation and cognitive decline induced by β-amyloid peptide. Behav Brain Res 209(1):165–173. doi:10.1016/j.bbr.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  24. Mansuy IM (2003) Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun 311(4):1195–1208. doi:10.1016/j.bbrc.2003.10.046

    Article  CAS  PubMed  Google Scholar 

  25. Wu H-Y, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires-Jones T, Xie H, Arbel-Ornath M, Grosskreutz CL, Bacskai BJ, Hyman BT (2010) Amyloid β induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci 30(7):2636–2649. doi:10.1523/jneurosci. 4456-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92(1):39–49. doi:10.1016/S0092-8674(00)80897-1

    Article  CAS  PubMed  Google Scholar 

  27. Mansuy IM, Winder DG, Moallem TM, Osman M, Mayford M, Hawkins RD, Kandel ER (1998) Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21(2):257–265. doi:10.1016/S0896-6273(00)80533-4

    Article  CAS  PubMed  Google Scholar 

  28. Polli JW, Billingsley ML, Kincaid RL (1991) Expression of the calmodulin-dependent protein phosphatase, calcineurin, in rat brain: developmental patterns and the role of nigrostriatal innervation. Dev Brain Res 63(1):105–119. doi:10.1016/0165-3806(91)90071-P

    Article  CAS  Google Scholar 

  29. Abdul HM, Furman JL, Sama MA, Mathis DM, Norris CM (2010) NFATs and Alzheimer’s disease. Mol Cell Pharmacol 2(1):7

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stratz C, Bhatia HS, Akundi RS, Nührenberg T, Trenk D, Muñoz E, Fiebich BL (2012) The anti-inflammatory effects of the 5-HT3 receptor antagonist tropisetron are mediated by the inhibition of p38 MAPK activation in primary human monocytes. Int Immunopharmacol 13(4):398–402. doi:10.1016/j.intimp.2012.05.013

    Article  CAS  PubMed  Google Scholar 

  31. Zádori D, Veres G, Szalárdy L, Klivényi P, Toldi J, Vécsei L (2014) Glutamatergic dysfunctioning in Alzheimer’s disease and related therapeutic targets. J Alzheimers Dis 42:S177–S187. doi:10.3233/JAD-132621

    PubMed  Google Scholar 

  32. Bayer H, Müller T, Myrtek D, Sorichter S, Ziegenhagen M, Norgauer J, Zissel G, Idzko M (2007) Serotoninergic receptors on human airway epithelial cells. Am J Respir Cell Mol Biol 36(1):85–93. doi:10.1165/rcmb.2006-0151OC

    Article  CAS  PubMed  Google Scholar 

  33. Dürk T, Panther E, Müller T, Sorichter S, Ferrari D, Pizzirani C, Di Virgilio F, Myrtek D, Norgauer J, Idzko M (2005) 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol 17(5):599–606. doi:10.1093/intimm/dxh242

    Article  PubMed  Google Scholar 

  34. León-Ponte M, Ahern GP, O’Connell PJ (2007) Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 109(8):3139–3146. doi:10.1182/blood-2006-10-052787

    Article  PubMed  PubMed Central  Google Scholar 

  35. O’Connell PJ, Wang X, Leon-Ponte M, Griffiths C, Pingle SC, Ahern GP (2006) A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells. Blood 107(3):1010–1017. doi:10.1182/blood-2005-07-2903

    Article  PubMed  PubMed Central  Google Scholar 

  36. Müller T, Dürk T, Blumenthal B, Grimm M, Cicko S, Panther E, Sorichter S, Herouy Y, Di Virgilio F, Ferrari D, Norgauer J, Idzko M (2009) 5-Hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One 4(7):e6453. doi:10.1371/journal.pone.0006453

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khan N-A, Poisson J-P (1999) 5-HT3 receptor-channels coupled with Na + influx in human T cells: role in T cell activation. J Neuroimmunol 99(1):53–60. doi:10.1016/S0165-5728(99)00101-0

    Article  CAS  PubMed  Google Scholar 

  38. Vogel D, Vereyken E, Glim JE, Heijnen P, Moeton M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 10(1):35. doi:10.1186/1742-2094-10-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Benveniste EN (1997) Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 75(3):165–173. doi:10.1007/s001090050101

    Article  CAS  PubMed  Google Scholar 

  40. Sun J-B, Olsson T, Wang W-Z, Xiao B-G, Kostulas V, Fredrikson S, Ekre H-P, Link H (1991) Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 21(6):1461–1468. doi:10.1002/eji.1830210620

    Article  CAS  PubMed  Google Scholar 

  41. Weiner H (2008) A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol 255(1):3–11. doi:10.1007/s00415-008-1002-8

    Article  CAS  PubMed  Google Scholar 

  42. Aminian A, Noorbakhsh F, Ghazi-Khansari M, Kafami L, Javadi S, Hassanzadeh G, Rahimian R, Dehpour AR, Mehr SE (2013) Tropisetron diminishes demyelination and disease severity in an animal model of multiple sclerosis. Neuroscience 248:299–306. doi:10.1016/j.neuroscience.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  43. Fakhfouri G, Rahimian R, Ghia J-E, Khan WI, Dehpour AR (2012) Impact of 5-HT3 receptor antagonists on peripheral and central diseases. Drug Discov Today 17(13–14):741–747. doi:10.1016/j.drudis.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  44. Dong C (2006) Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol 6(4):329–334. doi:10.1038/nri1807

    Article  CAS  PubMed  Google Scholar 

  45. El-behi M, Rostami A, Ciric B (2010) Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 5(2):189–197. doi:10.1007/s11481-009-9188-9

    Article  Google Scholar 

  46. Kohnomi S, Suemaru K, Goda M, Choshi T, Hibino S, Kawasaki H, Araki H (2010) Ameliorating effects of tropisetron on dopaminergic disruption of prepulse inhibition via the α7 nicotinic acetylcholine receptor in Wistar rats. Brain Res 1353:152–158. doi:10.1016/j.brainres.2010.07.037

    Article  CAS  PubMed  Google Scholar 

  47. Stegemann A, Sindrilaru A, Eckes B, del Rey A, Heinick A, Schulte JS, Müller FU, Grando SA, Fiebich BL, Scharffetter-Kochanek K, Luger TA, Böhm M (2013) Tropisetron suppresses collagen synthesis in skin fibroblasts via α7 nicotinic acetylcholine receptor and attenuates fibrosis in a scleroderma mouse model. Arthritis Rheum 65(3):792–804. doi:10.1002/art.37809

    Article  CAS  PubMed  Google Scholar 

  48. de Jonge WJ, Ulloa L (2007) The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 151(7):915–929. doi:10.1038/sj.bjp.0707264

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gbadamosi J, Buhmann C, Moench A, Heesen C (2001) Failure of ondansetron in treating cerebellar tremor in MS patients—an open-label pilot study. Acta Neurol Scand 104(5):308–311. doi:10.1034/j.1600-0404.2001.00075.x

    Article  CAS  PubMed  Google Scholar 

  50. Rice GP, Lesaux J, Vandervoort P, Macewan L, Ebers GC (1997) Ondansetron, a 5-HT3 antagonist, improves cerebellar tremor. J Neurol Neurosurg Psychiatry 62(3):282–284. doi:10.1136/jnnp.62.3.282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trouillas P (1993) The cerebellar serotoninergic system and its possible involvement in cerebellar ataxia. Can J Neurol Sci J Can Sci Neurol 20(Suppl 3):S78–82

    Article  Google Scholar 

  52. Van Woert MH, Plaitakis A, Chung Hwang E, Berl S (1979) Effect of thiamine deficiency on brain serotonin turnover. Brain Res 179(1):103–110. doi:10.1016/0006-8993(79)90494-3

    Article  PubMed  Google Scholar 

  53. Haenel T, Stockli HR, Truog P (1995) A case of rare side effects of certain antidepressive drugs. Nervenarzt 66(1):70–72

    CAS  PubMed  Google Scholar 

  54. Kesselring J, Beer S (2005) Symptomatic therapy and neurorehabilitation in multiple sclerosis. Lancet Neurol 4(10):643–652. doi:10.1016/S1474-4422(05)70193-9

    Article  PubMed  Google Scholar 

  55. McCleane GJ, Suzuki R, Dickenson AH (2003) Does a single intravenous injection of the 5HT3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blinded, placebo-controlled cross-over study. Anesth Analg 97(5):1474–1478. doi:10.1213/01.ANE.0000085640.69855.51

    Article  CAS  PubMed  Google Scholar 

  56. Norouzi A, Fakhfouri G, Rahimian R (2012) How can 5-HT3 receptor antagonists exert analgesic properties? Acta Med Iran 50(4):225

    PubMed  Google Scholar 

  57. Lucas S-M, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(S1):S232–S240. doi:10.1038/sj.bjp.0706400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397. doi:10.1016/S0166-2236(99)01401-0

    Article  CAS  PubMed  Google Scholar 

  59. Rahimian R, Daneshmand A, Mehr SE, Barzegar-Fallah A, Mohammadi-Rick S, Fakhfouri G, Shabanzadeh AP, Dehpour AR (2011) Tropisetron ameliorates ischemic brain injury in an embolic model of stroke. Brain Res 1392:101–109. doi:10.1016/j.brainres.2011.03.053

    Article  CAS  PubMed  Google Scholar 

  60. Lee HJ, Ban JY, Seong YH (2005) Blockade of 5-HT3 receptor with MDL7222 and Y25130 reduces hydrogen peroxide-induced neurotoxicity in cultured rat cortical cells. Life Sci 78(3):294–300. doi:10.1016/j.lfs.2005.04.043

    Article  CAS  PubMed  Google Scholar 

  61. Kagami-ishi Y, Shibata S, Watanabe S (1992) Neuroprotective effect of 5-HT3 receptor antagonist on ischemia-induced decrease in CA1 field potential in rat hippocampal slices. Eur J Pharmacol 224(1):51–56. doi:10.1016/0014-2999(92)94817-F

    Article  CAS  Google Scholar 

  62. Candelario-Jalil E, Muñoz E, Fiebich B (2008) Detrimental effects of tropisetron on permanent ischemic stroke in the rat. BMC Neurosci 9(1):1–6. doi:10.1186/1471-2202-9-19

    Article  Google Scholar 

  63. Swartz MM, Linn DM, Linn CL (2013) Tropisetron as a neuroprotective agent against glutamate-induced excitotoxicity and mechanisms of action. Neuropharmacology 73:111–121. doi:10.1016/j.neuropharm.2013.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rahimian R, Dehpour AR, Fakhfouri G, Khorramizadeh MR, Ghia J-E, Seyedabadi M, Caldarelli A, Mousavizadeh K, Forouzandeh M, Mehr SE (2011) Tropisetron upregulates cannabinoid CB1 receptors in cerebellar granule cells: possible involvement of calcineurin. Brain Res 1417:1–8. doi:10.1016/j.brainres.2011.08.050

    Article  CAS  PubMed  Google Scholar 

  65. Maggiora G (2011) The reductionist paradox: are the laws of chemistry and physics sufficient for the discovery of new drugs? J Comput Aided Mol Des 25(8):699–708. doi:10.1007/s10822-011-9447-8

    Article  CAS  PubMed  Google Scholar 

  66. Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA (2013) Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 18(9–10):495–501. doi:10.1016/j.drudis.2013.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cappelli A, Gallelli A, Manini M, Anzini M, Mennuni L, Makovec F, Menziani MC, Alcaro S, Ortuso F, Vomero S (2005) Further studies on the interaction of the 5-hydroxytryptamine3 (5-HT3) receptor with arylpiperazine ligands. development of a new 5-HT3 receptor ligand showing potent acetylcholinesterase inhibitory properties. J Med Chem 48(10):3564–3575. doi:10.1021/jm0493461

    Article  CAS  PubMed  Google Scholar 

  68. Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, Soares MP, Lopez MG (2013) The microglial alpha7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal 19(11):1135–1148. doi:10.1089/ars.2012.4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rezvani AH, Kholdebarin E, Brucato FH, Callahan PM, Lowe DA, Levin ED (2009) Effect of R3487/MEM3454, a novel nicotinic α7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 33(2):269–275. doi:10.1016/j.pnpbp.2008.11.018

    Article  CAS  Google Scholar 

  70. Macor JE, Gurley D, Lanthorn T, Loch J, Mack RA, Mullen G, Tran O, Wright N, Gordon JC (2001) The 5-HT3 antagonist tropisetron (ICS 205-930) is a potent and selective α7 nicotinic receptor partial agonist. Bioorg Med Chem Lett 11(3):319–321. doi:10.1016/S0960-894X(00)00670-3

    Article  CAS  PubMed  Google Scholar 

  71. Papke RL, Schiff HC, Jack BA, Horenstein NA (2005) Molecular dissection of tropisetron, an α7 nicotinic acetylcholine receptor-selective partial agonist. Neurosci Lett 378(3):140–144. doi:10.1016/j.neulet.2004.12.025

    Article  CAS  PubMed  Google Scholar 

  72. Davies PA (2011) Allosteric modulation of the 5-HT3 receptor. Curr Opin Pharmacol 11(1):75–80. doi:10.1016/j.coph.2011.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ldl V, Muñoz E, Calzado MA, Lieb K, Candelario-Jalil E, Gschaidmeir H, Färber L, Mueller W, Stratz T, Fiebich BL (2005) The 5-HT3 receptor antagonist tropisetron inhibits T cell activation by targeting the calcineurin pathway. Biochem Pharmacol 70(3):369–380. doi:10.1016/j.bcp.2005.04.031

    Article  Google Scholar 

  74. Setoguchi D, Nakamura M, Yatsuki H, Watanabe E, Tateishi Y, Kuwaki T, Oda S (2011) Experimental examination of anti-inflammatory effects of a 5-HT3 receptor antagonist, tropisetron, and concomitant effects on autonomic nervous function in a rat sepsis model. Int Immunopharmacol 11(12):2073–2078. doi:10.1016/j.intimp.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  75. Spilman P, Descamps O, Gorostiza O, Peters-Libeu C, Poksay KS, Matalis A, Campagna J, Patent A, Rao R, John V, Bredesen DE (2014) The multi-functional drug tropisetron binds APP and normalizes cognition in a murine Alzheimer’s model. Brain Res 1551:25–44. doi:10.1016/j.brainres.2013.12.029

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors disclose no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rahimian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhfouri, G., Mousavizadeh, K., Mehr, S.E. et al. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists. Mol Neurobiol 52, 1670–1679 (2015). https://doi.org/10.1007/s12035-014-8957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8957-5

Keywords

Navigation