Skip to main content
Log in

Structural and optical characterization of Sm-doped ZnO nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Micro-structural changes in zinc oxide (ZnO) nanoparticles induced by the substitution of \(\hbox {Zn}^{2+}\) in ZnO by a rare earth (RE) metal ion, \(\hbox {Sm}^{3+}\), are investigated. Both pristine and Sm-doped ZnO with a nominal doping concentration of 1, 2 and 4% of Sm using a simple wet-chemical synthetic route followed by calcination at a high temperature of \(900{^{\circ }}\hbox {C}\), are synthesized. Structural investigations are primarily conducted using X-ray powder diffraction (XRPD) and scanning electron microscopy techniques. Evolution of structural parameters (unit cell parameters, average crystallite size, crystallinity percentage, lattice strain, stress, energy density and atomic packing factor) upon Sm doping is investigated together with Rietveld refinement and Le Bail analysis techniques. XRPD data confirmed that the synthesized nanostructures crystallize in a wurtzite hexagonal structure, the dopant Sm is incorporated into the Zn lattice and the annealing treatment plays a crucial role in determining the structural and optical properties of RE-metal-doped nanoparticles. Values of the optical band gap energy estimated from optical absorbance measurements reveal a widening of the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gleiter H 2000 Acta Mater. 48 1

    Article  CAS  Google Scholar 

  2. Klingshirn C 2007 ChemPhysChem 8 6

    Article  Google Scholar 

  3. Klingshirn C 2007 Phys. Status Solidi 244 9

    Google Scholar 

  4. Klingshirn C, Fallert J, Zhou H, Sartor J, Thiele C, Maier-Flaig F et al 2010 Phys. status solidi 247 1424

    Article  CAS  Google Scholar 

  5. Kołodziejczak-Radzimska A and Jesionowski T 2014 Materials (Basel) 7 4

    Article  Google Scholar 

  6. Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y et al 1998 Appl. Phys. Lett. 70 2230

    Article  Google Scholar 

  7. Reynolds D C, Look D C and Jogai B 1996 Solid State Commun. 99 12

    Article  Google Scholar 

  8. Wang Z L 2004 J. Phys. Condens. Matter 16 25

    CAS  Google Scholar 

  9. Lim J-H, Kang C-K, Kim K-K, Park I-K, Hwang D-K and Park S-J 2006 Adv. Mater. 18 2720

    Article  CAS  Google Scholar 

  10. Xu S and Wang Z L 2011 Nano Res. 4 11

    Google Scholar 

  11. Shao S, Zheng K, Zidek K, Chabera P, Pullerits T and Zhang F 2013 Sol. Energy Mater. Sol. Cells 118 43

    Article  CAS  Google Scholar 

  12. Ciciliati M A, Silva M F, Fernandes D M, de Melo M A C, Hechenleitner A A W and Pineda E A G 2015 Mater. Lett. 159 84

    Article  CAS  Google Scholar 

  13. Saleh R and Djaja N F 2014 Spectrochim. Acta A: Mol. Biomol. Spectrosc. 130 581

    Article  CAS  Google Scholar 

  14. Fabbiyola S, Sailaja V, Kennedy L J, Bououdina M and Judith Vijaya J 2017 J. Alloys Compd. 694 522

    Article  CAS  Google Scholar 

  15. Singhal S, Kaur J, Namgyal T and Sharma R 2012 Phys. B Condens. Matter 407 8

    Article  Google Scholar 

  16. Hosseini S M, Sarsari I A, Kameli P and Salamati H 2015 J. Alloys Compd. 640 408

    Article  CAS  Google Scholar 

  17. Kundaliya D C, Ogale S B, Lofland S E, Dhar S, Metting C J, Shinde S R et al 2004 Nat. Mater. 3 709

    Article  CAS  Google Scholar 

  18. Jung S W, An S-J, Yi G-C, Jung C U, Lee S-I and Cho S 2002 Appl. Phys. Lett. 80 4561

    Article  CAS  Google Scholar 

  19. Korake P V, Kadam A N and Garadkar K M 2014 J. Rare Earths 32 4

    Article  Google Scholar 

  20. Atkinson S C 2014 Crystal structures and phase transitions in the rare earth oxides, University of Salford

  21. Daksh D and Agrawal Y K 2016 Rev. Nanosci. Nanotechnol. 5 1

    Article  CAS  Google Scholar 

  22. Lin C C, Young S L, Kung C Y, Horng L, Chen H Z, Kao M C et al 2013 Vacuum 87 178

    Article  CAS  Google Scholar 

  23. Ahmed M A, Mwankemwa B S, Carleschi E, Doyle B P, Meyer W E and Nel J M 2018 Mater. Sci. Semicond. Process. 79 53

    Article  CAS  Google Scholar 

  24. Kumar D R, Ranjith K S, Nivedita L R and Kumar R T R 2017 J. Rare Earths 35 10

    Google Scholar 

  25. Abbad M M, Takriff M S, Benamor A, Nasser M S, Mahmoudi E and Mohammad A W 2018 J. Sol-Gel Sci. Technol. 85 178

    Article  Google Scholar 

  26. Pandiyarajan T, Mangalaraja R V, Karthikeyan B, Sathishkumar P, Mansilla H D, Contreras D et al 2015 Appl. Phys. A 119 487

    Article  CAS  Google Scholar 

  27. Toby B H 2001 J. Appl. Crystallogr. 34 2

    Article  Google Scholar 

  28. Laugier J and Bochu B 1999 LMGP-Suite of programs for the interpretation of X-ray experiments (ENSP/Laboratoire des Matériaux et du Génie Physique)

  29. Sawada H, Wang R and Sleight A W 1996 J. Solid State Chem. 122 1

    Article  Google Scholar 

  30. Zav’yalova A A, Imamov R M, Ragimli N A and Semilatov S A 1976 Sov. Phys. Crystallogr. 21 411

    Google Scholar 

  31. Arora D, Asokan K, Mahajan A, Kaur H and Singh D P 2016 RSC Adv. 6 81

    Google Scholar 

  32. Kaygili O 2014 J. Therm. Anal. Calorim. 117 1

    Article  Google Scholar 

  33. Kaygili O, Ercan I, Ates T, Keser S, Orek C, Gunduz B et al 2018 Chem. Phys. 513 273

    Article  CAS  Google Scholar 

  34. Kumar S S, Venkateswarlu P, Rao V R and Rao G N 2013 Int. Nano Lett. 3 30

    Article  Google Scholar 

  35. Zhang J-M, Zhang Y, Xu K-W and Ji V 2006 Solid State Commun. 139 3

    Google Scholar 

  36. Nye J F 1985 Physical properties of crystals: their representation by tensors and matrices (Oxford: Clarendon Press)

    Google Scholar 

  37. Kumar P, Singh B K, Pal B N and Pandey P C 2016 Appl. Phys. A 122 8

    Google Scholar 

  38. Mote V D, Dargad J S and Dole B N 2013 Nanosci. Nanoeng. 1 2

    Google Scholar 

  39. Zamiri R, Rebelo A, Zamiri G, Adnani A, Kuashal A, Belsley M S et al 2014 RSC Adv. 4 20902

    Article  CAS  Google Scholar 

  40. Tauc J 1966 in S Nudelman and S Mitra (eds) Optical properties and electronic structure of amorphous semiconductors (Boston: Springer US)

    Google Scholar 

  41. Badreddine K, Kazah I, Rekaby M and Awad R 2018 J. Nanomater. 2018 1

    Article  Google Scholar 

  42. He H Y, Fei J and Lu J 2015 J. Nanostruct. Chem. 5 2

    Article  Google Scholar 

  43. Kamarulzaman N, Kasim M F and Rusdi R 2015 Nanoscale Res. Lett. 10 1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y Kaya for his assistance and discussion on the determination of optical energy gaps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H E Okur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okur, H.E., Bulut, N., Ates, T. et al. Structural and optical characterization of Sm-doped ZnO nanoparticles. Bull Mater Sci 42, 199 (2019). https://doi.org/10.1007/s12034-019-1877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1877-2

Keywords

Navigation