Skip to main content
Log in

Structural and Functional Analysis of Pullulanase Type 1 (PulA) from Geobacillus thermopakistaniensis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pullulanase type I (PulA) is a debranching enzyme that specifically cleaves α-1,6-glycosidic linkages in pullulan. Pullulan has not only diverse applications in food industry but also has immune-stimulatory effects on B and T cells, and found to enhance the production of various anti-inflammatory cytokines in human. Moreover, pullulan has been suggested as a possible anti-cancer drug delivery agent without adjuvant due to its unique structure. The process of pullulan degradation is unresolved due to imprecise pullulanase structural characteristics. Therefore, the present study aimed to understand the structural and functional characteristics of pullulanase enzyme from Geobacillus thermopakistaniensis MAS1 strain using various computational approaches. The physio-chemical topographies and secondary structure of GT_PulA were explored using ProPram, InterPro and SMART. Various tools like I-TASSER, ModRefiner, RAMPAGE, PROCHECK and MOE 2009.10 were used to construct and verify the 3D structural model. The structural elucidation confirmed the significant domains, i.e., CBM48, CBM2, and TIM barrel having catalytically active residues, and conserved region YNGWDP. CBM2 domain along with TIM barrel has a capacity to bind different ligands and proved favorable for multiple substrate catalyses. These structural properties can have a potential effect on enhancing enzymatic activity of GT_PulA enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GT_PulA:

Geobacillus thermopakistaniensis Pullulanase type 1

References

  1. Van Der Maarel, M. J., Van Der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology,94, 137–155.

    PubMed  Google Scholar 

  2. Han, T., Zeng, F., Li, Z., Liu, L., Wei, M., Guan, Q., et al. (2013). Biochemical characterization of a recombinant pullulanase from thermococcus kodakarensis kod1. Letters in Applied Microbiology,57, 336–343.

    PubMed  CAS  Google Scholar 

  3. Kunamneni, A., & Singh, S. (2005). Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochemical Engineering Journal,27, 179–190.

    CAS  Google Scholar 

  4. Nagatomo, D., Taniai, M., Ariyasu, H., Taniguchi, M., Aga, M., Ariyasu, T., et al. (2015). Cholesteryl pullulan encapsulated tnf-alpha nanoparticles are an effective mucosal vaccine adjuvant against influenza virus. Biomedical Research International,25, 15.

    Google Scholar 

  5. Uenaka, A., Wada, H., Isobe, M., Saika, T., Tsuji, K., Sato, E., et al. (2007). T cell immunomonitoring and tumor responses in patients immunized with a complex of cholesterol-bearing hydrophobized pullulan (chp) and ny-eso-1 protein. Cancer Immunology,7, 9.

    Google Scholar 

  6. Nochi, T., Yuki, Y., Takahashi, H., Sawada, S., Mejima, M., Kohda, T., et al. (2010). Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Natural Matererials,9, 572–578.

    CAS  Google Scholar 

  7. Haki, G., & Rakshit, S. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource Technology,89, 17–34.

    PubMed  CAS  Google Scholar 

  8. Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: A biotechnological perspective. Process Biochemistry,38, 1599–1616.

    CAS  Google Scholar 

  9. Siddiqui, M. A., Rashid, N., Ayyampalayam, S., & Whitman, W. B. (2014). Draft genome sequence of geobacillus thermopakistaniensis strain mas1. Genome Announcements,2, e00559–e514.

    PubMed  PubMed Central  Google Scholar 

  10. Bertolini, A. C. (2010). Starches: Characterization, properties, and applications. Boca Raton: Taylor & Francis.

    Google Scholar 

  11. Souza, P. M. (2010). Application of microbial α-amylase in industry—A review. Brazilian Journal of Microbiology,41, 850–861.

    PubMed  PubMed Central  Google Scholar 

  12. Bertoldo, C., & Antranikian, G. (2002). Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Current Opinion in Chemical Biology,6, 151–160.

    PubMed  CAS  Google Scholar 

  13. Janeček, Š. (2002). How many conserved sequence regions are there in the α-amylase family. Biologia,57, 29–41.

    Google Scholar 

  14. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2013). The carbohydrate-active enzymes database (cazy) in 2013. Nucleic Acids Research,42, D490–D495.

    PubMed  PubMed Central  Google Scholar 

  15. Domań-Pytka, M., & Bardowski, J. (2004). Pullulan degrading enzymes of bacterial origin. Critical Reviews in Microbiology,30, 107–121.

    PubMed  Google Scholar 

  16. Singh, R. S., Saini, G. K., & Kennedy, J. F. (2008). Pullulan: Microbial sources, production and applications. Carbohydrate Polymers,73, 515–531.

    PubMed  CAS  Google Scholar 

  17. Rashid, N., Farooq, A., & Akhtar, M. (2009). Insoluble but enzymatically active α-amylase from bacillus licheniformis. Biologia,64, 660–663.

    CAS  Google Scholar 

  18. Armenta, S., Moreno-Mendieta, S., Sánchez-Cuapio, Z., Sánchez, S., & Rodríguez-Sanoja, R. (2017). Advances in molecular engineering of carbohydrate-binding modules. Proteins: Structure, Function, and Bioinformatics,85, 1602–1617.

    CAS  Google Scholar 

  19. Hii, S. L., Tan, J. S., Ling, T. C., & Ariff, A. B. (2012). Pullulanase: Role in starch hydrolysis and potential industrial applications. Enzyme Research. https://doi.org/10.1155/2012/921362.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Niehaus, F., Peters, A., Groudieva, T., & Antranikian, G. (2000). Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon thermococcus aggregans. FEMS Microbiology Letters,190, 223–229.

    PubMed  CAS  Google Scholar 

  21. Ryan, S. M., Fitzgerald, G. F., & van Sinderen, D. (2006). Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Applied and Environmental Microbiology,72, 5289–5296.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Antranikian, G., Vorgias, C. E., & Bertoldo, C. (2005). Extreme environments as a resource for microorganisms and novel biocatalysts. Marine Biotechnology,96, 219–262.

    CAS  Google Scholar 

  23. Sterner, R. H., & Liebl, W. (2001). Thermophilic adaptation of proteins. Critical Reviews in Biochemistry and Molecular Biology,36, 39–106.

    PubMed  CAS  Google Scholar 

  24. Malakar, R., Tiwari, A. & Malviya, S. (2010). Pullulanase: A potential enzyme for industrial application. International Journal of Biomedical Research. https://doi.org/10.7439/ijbr.v1i2.53

    Article  Google Scholar 

  25. Talukdar, S., Bayan, U., & Saikia, K. K. (2017). In silico identification of vaccine candidates against klebsiella oxytoca. Computational Biology and Chemistry,69, 48–54.

    PubMed  CAS  Google Scholar 

  26. Mikami, B., Iwamoto, H., Malle, D., Yoon, H.-J., Demirkan-Sarikaya, E., Mezaki, Y., et al. (2006). Crystal structure of pullulanase: Evidence for parallel binding of oligosaccharides in the active site. Journal of Molecular Biology,359, 690–707.

    PubMed  CAS  Google Scholar 

  27. Malle, D., Itoh, T., Hashimoto, W., Murata, K., Utsumi, S., & Mikami, B. (2006). Overexpression, purification and preliminary X-ray analysis of pullulanase from bacillus subtilis strain 168. Acta Crystallographica Section F: Structural Biology and Crystallization Communications,62, 381–384.

    CAS  Google Scholar 

  28. Turkenburg, J. P., Brzozowski, A. M., Svendsen, A., Borchert, T. V., Davies, G. J., & Wilson, K. S. (2009). Structure of a pullulanase from bacillus acidopullulyticus. Proteins: Structure, Function, and Bioinformatics,76, 516–519.

    CAS  Google Scholar 

  29. Gourlay, L. J., Santi, I., Pezzicoli, A., Grandi, G., Soriani, M., & Bolognesi, M. (2009). Group b streptococcus pullulanase crystal structures in the context of a novel strategy for vaccine development. Journal of Bacteriology,191, 3544–3552.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Siddiqui, M. A., Rashid, N., Ayyampalayam, S., & Whitman, W. B. (2014). Draft genome sequence of geobacillus thermopakistaniensis strain mas1. Genome Announce,2, e00559–e514.

    Google Scholar 

  31. Amin, A., Ahmed, I., Salam, N., Kim, Y. B., Singh, D., Zhi, Y. X., et al. (2017). Diversity and distribution of thermophilic bacteria in hot springs of pakistan. Microbial Ecology,74, 116–127.

    PubMed  Google Scholar 

  32. Meekins, D. A., Vander Kooi, C. W., & Gentry, M. S. (2016). Structural mechanisms of plant glucan phosphatases in starch metabolism. The FEBS Journal,283, 2427–2447.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Janeček, Š., Majzlová, K., Svensson, B., & MacGregor, E. (2017). The starch-binding domain family cbm41—An in silico analysis of evolutionary relationships. Proteins: Structure, Function, and Bioinformatics,85, 1480–1492.

    Google Scholar 

  34. Xu, J., Ren, F., Huang, C. H., Zheng, Y., Zhen, J., Sun, H., et al. (2014). Functional and structural studies of pullulanase from anoxybacillus sp. Lm18-11. Proteins: Structure, Function, and Bioinformatics,82, 1685–1693.

    CAS  Google Scholar 

  35. MacGregor, E. A. (2005). An overview of clan gh-h and distantly related families. Biologia,60, 5–12.

    CAS  Google Scholar 

  36. Machovič, M., Svensson, B., Ann MacGregor, E., & Janeček, Š. (2005). A new clan of cbm families based on bioinformatics of starch-binding domains from families cbm20 and cbm21. The FEBS Journal,272, 5497–5513.

    PubMed  Google Scholar 

  37. Botha, J., Mizrachi, E., Myburg, A. A., & Cowan, D. A. (2017). Carbohydrate active enzyme domains from extreme thermophiles: Components of a modular toolbox for lignocellulose degradation. Extremophiles,22, 1–12.

    PubMed  Google Scholar 

  38. Ali, R. & Shafiq, M. I. (2015). Sequence, structure, and binding analysis of cyclodextrinase (tk1770) from t. Kodakarensis (kod1) using an in silico approach. Archaea. https://doi.org/10.1155/2015/179196.

  39. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The i-tasser suite: Protein structure and function prediction. Nature Methods,12, 7–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Singh, C., & Atri, N. (2013). Chemo-informatic design of antibiotic geldenamycin analogs to target stress proteins hsp90 of pathogenic protozoan parasites. Bioinformation,9, 329.

    PubMed  PubMed Central  Google Scholar 

  41. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S. R., et al. (2002). The pfam protein families database. Nucleic Acids Research,30, 276–280.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Gopalakrishnan, K., Sowmiya, G., Sheik, S. & Sekar, K. (2007). Ramachandran plot on the web (2.0). Protein and Peptide Letters, 14, 669–671.

    Google Scholar 

  43. Rahmatabadi, S. S., Sadeghian, I., Nezafat, N., Negahdaripour, M., Hajighahramani, N., Hemmati, S., et al. (2017). In silico investigation of pullulanase enzymes from various bacillus species. Current Proteomics,14, 175–185.

    CAS  Google Scholar 

  44. Guillén, D., Sánchez, S., & Rodríguez-Sanoja, R. (2010). Carbohydrate-binding domains: Multiplicity of biological roles. Applied Microbiology and Biotechnology,85, 1241–1249.

    PubMed  Google Scholar 

  45. Mohapatra, S., Prasad, A., Haque, F., Ray, S., De, B., & Ray, S. S. (2015). In silico investigation of black tea components on α-amylase, α-glucosidase and lipase. Journal of Applied Pharmaceutical Science,5, 42–47.

    CAS  Google Scholar 

  46. Zhao, Y., Chi, Z., Xu, Y., Shi, N., Chi, Z., & Liu, G. (2018). High-level extracellular expression of κ-carrageenase in brevibacillus choshinensis for the production of a series of κ-carrageenan oligosaccharides. Process Biochemistry,64, 83–92.

    CAS  Google Scholar 

  47. Simpson, P. J., Xie, H., Bolam, D. N., Gilbert, H. J., & Williamson, M. P. (2000). The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. Journal of Biological Chemistry,275, 41137–41142.

    PubMed  CAS  Google Scholar 

Download references

Funding

The funding for this manuscript was provided by HEC, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Waqar Ahmad or Bushra Ijaz.

Ethics declarations

Conflict of interest

All the authors declare that they have no any kind of competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqrar, U., Javaid, H., Ashraf, N. et al. Structural and Functional Analysis of Pullulanase Type 1 (PulA) from Geobacillus thermopakistaniensis. Mol Biotechnol 62, 370–379 (2020). https://doi.org/10.1007/s12033-020-00255-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00255-x

Keywords

Navigation