Skip to main content
Log in

Deployment of Stacked Antimicrobial Genes in Banana for Stable Tolerance Against Fusarium oxysporum f.sp. cubense Through Genetic Transformation

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Enhanced tolerance to wilt disease (Fusarium oxysporum f.sp. cubense) was achieved in banana variety Rasthali (AAB) by the transformation of embryogenic cells with two antimicrobial genes viz., Ace-AMP1 and pflp using Agrobacterium mediated transformation. The transgene copy numbers in stable transformants were confirmed by Southern analysis. The expression of stacked genes in the transgenic lines was validated by RT-PCR as well as Northern analysis. Bioassay using Foc race 1 in pot culture experiments demonstrated enhanced tolerance after 180 days of planting. Two independent transformants showed 10–20% Vascular Discoloration Index compared to untransformed banana cv. Rasthali (96%). The stacked lines revealed higher activity of Super Oxide Dismutase and Peroxidase compared to untransformed control which depicted higher tolerance to oxidative stress caused by Foc infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ploetz, R. C. (1993). Fusarium wilt (Panama disease). In: Ganry J (ed) Breeding banana and plantain for resistance to disease and pests. CIRAD: In collaboration with INIBAP, Montpellier, p 149–158

  2. Ploetz, R. C. (2006). Panama disease, an old nemesis rears its ugly head: parts 2, the beginnings of the banana export trades. Plant Health Progress,6(1), 18. https://doi.org/10.1094/PHP-2005-1221-01-RV.

    Article  Google Scholar 

  3. Li, C., Chen, S., Zuo, C., Sun, Q., Ye, Q., Yi, G., et al. (2011). The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology,131, 327–340.

    CAS  Google Scholar 

  4. Ploetz, R. C. (2000). Panama disease: A classic and destructive disease of banana. Plant Health Progress,10, 1–7.

    Google Scholar 

  5. Chakrabarti, A., Ganapathi, T. R., Mukherjee, P. K., & Bapat, V. A. (2003). MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta,216, 587–596.

    CAS  PubMed  Google Scholar 

  6. Pei, X. W., Chen, S. K., Wen, R. M., Ye, S., Huang, J. Q., Zhang, Y. Q., et al. (2005). Creation of transgenic banana expressing human lysozyme gene for Panama wilt resistance. Journal of Integrative Plant Biology,47, 971–977.

    CAS  Google Scholar 

  7. Maziah, M., Sreeramanan, S., Puad, A., & Sariah, M. (2007). Production of transgenic banana Rasthali (AAB) via Agrobacterium-mediated transformation with a rice chitinase gene. J Plant Sci,2, 504–517.

    CAS  Google Scholar 

  8. Maziah, M., Sariah, M., & Sreeramanan, S. (2007). Transgenic banana Rasthali (AAB) with β-1,3-glucanase gene for tolerance to Fusarium wilt race1 disease via Agrobacterium-mediated transformation system. Plant Pathol J,6, 271–282.

    CAS  Google Scholar 

  9. Paul, J. Y., Becker, D. K., Dickman, M. B., Harding, R. M., Khanna, H. K., & Dale, J. L. (2011). Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnology Journal,9, 1141–1149.

    CAS  PubMed  Google Scholar 

  10. Yip, M. K., Lee, S. W., Su, K. C., Lin, Y. H., Chen, T. Y., & Feng, T. Y. (2011). An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnology Reports,5, 245–254.

    Google Scholar 

  11. Mahdavi, F., Sariah, M., & Maziah, M. (2012). Expression of rice thaumatin like proteingene in transgenic banana plants enhances resistance to Fusarium wilt. Applied Biochemistry and Biotechnology,166, 1008–1019.

    CAS  PubMed  Google Scholar 

  12. Ghag, S. B., Shekhawat, U. K. S., & Ganapathi, T. R. (2012). Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS ONE,7, e39557.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, C. H., Wei, Y. R., Huang, Y. H., & Yi, G. J. (2013). An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. In Vitro Cellular & Developmental Biology,49, 584–592.

    CAS  Google Scholar 

  14. Mohandas, S., Sowmya, H. D., Saxena, A. K., Meenakshi, S., Rania, R. T., & Mahmood, R. (2013). Transgenic banana cv. Rasthali (AAB, Silk gp) harboring Ace-AMP1 gene imparts enhanced resistance to Fusarium oxysporum f. sp. cubense race 1. Scientia Horticulturae,164, 392–399.

    CAS  Google Scholar 

  15. Ghag, S. B., Shekhawat, U. K., & Ganapathi, T. R. (2014). Transgenic banana plants expressing a Stellaria media defensin gene (Sm-AMP-D1) demonstrate improved resistance to Fusarium oxysporum. Plant Cell, Tissue and Organ Culture (PCTOC),119, 247–255.

    CAS  Google Scholar 

  16. Ghag, S. B., Shekhawat, U. K., & Ganapathi, T. R. (2014). Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants. AoB Plants. https://doi.org/10.1093/aobpla/plu037.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ghag, S. B., Shekhawat, U. K., & Ganapathi, T. R. (2014). Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnology Journal,12, 541–553.

    CAS  PubMed  Google Scholar 

  18. Magambo, B., Khanna, H., Arinaitwe, G., Tendo, S., Arinaitwe, I. K., Kubiriba, J., et al. (2016). Inhibition of cell death as an approach for development of transgenic resistance against Fusarium wilt disease. African Journal of Biotechnology,15, 786–797.

    CAS  Google Scholar 

  19. Cammue, B. P. A., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I. J., Proost, P., et al. (1995). Apotent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiology,109, 445–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, Y., He, Y., & Ge, X. (2011). Functional characterization of the recombinant antimicrobial peptide Trx-Ace-AMP1 and its application on the control of tomato early blight disease. Applied Microbiology and Biotechnology,90, 1303–1310.

    CAS  PubMed  Google Scholar 

  21. Arondel, V., & Kader, J. C. (1990). Lipid transfer in plants. Experientia,46, 579–585.

    CAS  PubMed  Google Scholar 

  22. Kader, J. C. (1993). Lipid transport in plants. In T. S. Moore (Ed.), Lipid Metabolism in Plants (pp. 309–336). Boca Raton: CRC Press.

    Google Scholar 

  23. Molina, A., & Garcia-Olmedo, F. (1993). Developmental and pathogen induced expression of three barley genes encoding lipid transfer proteins. The Plant Journal,4, 983–991.

    CAS  PubMed  Google Scholar 

  24. Bi, Y. M., Cammue, B. P. A., Goodwin, P. H., Krishnaraj, S., & Saxena, P. K. (1999). Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Reports,18, 835–840.

    CAS  Google Scholar 

  25. Li, X., Gasic, K., Cammue, B., Broekaert, W., & Korban, S. S. (2003). Transgenic rose lines harboring an antimicrobial protein gene, Ace-Amp 1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta,218, 226–232.

    CAS  PubMed  Google Scholar 

  26. Patkar, R. N., & Chattoo, B. B. (2006). Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Molecular Breeding,17, 159–171.

    CAS  Google Scholar 

  27. Roy-Barman, S., Sautter, C., & Chattoo, B. B. (2006). Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Research,15, 435–446.

    CAS  PubMed  Google Scholar 

  28. Biehler, K., & Fock, H. (1996). Evidence for the contribution of the Mehlerperoxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiology,112, 265–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Desikan, R., Hancock, J. T., Coffey, M. J., & Neill, S. J. (1996). Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase like enzyme. FEBS Letters,382, 213–217.

    CAS  PubMed  Google Scholar 

  30. Lamb, C. J., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology,48, 251–275.

    CAS  PubMed  Google Scholar 

  31. Khanna, H., Becker, D., Kleidon, J., & Dale, J. L. (2004). Centrifugation assisted Agrobacterium-tumefaciens mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Molecular Breeding,14, 239–252.

    CAS  Google Scholar 

  32. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA mini preparation: version II. Plant Molecular Biology Reporter,1, 19–21.

    CAS  Google Scholar 

  33. Smith, L. J., Smith, M. K., Tree, D., O‘Keefe, D., & Galea, V. J. (2008). Development of a small-plant bioassay to assess banana grown from tissue culture for consistent infection by Fusarium oxysporum f. sp. cubense. Australasian Plant Pathology,2, 171–179.

    Google Scholar 

  34. Sambrook, J., Fritsch, E. F., & Maniatis, S. (1989). Molecular sloning: A laboratory manual (2nd ed.). New York: Cold spring Harbor CSHL Press, Cold Spring Harbor.

    Google Scholar 

  35. Du, Z., & Bramlage, W. J. (1994). Superoxide dismutase activities in senescing apple fruit (Malus domestica Borkh.). Journal of Food Science,59(3), 581–584.

    CAS  Google Scholar 

  36. Chander, S. M. (1990). Enzymatic properties association with resistance to rust and powdery mildew in peas. Indian Journal of Horticulture,47, 341–345.

    Google Scholar 

  37. Vishnevetsky, J., White, T. L., Jr., Palmateer, A. J., Flaishman, M., Cohen, Y., Elad, Y., et al. (2011). Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Research,20(1), 61–72. https://doi.org/10.1007/s11248-010-9392-7.

    Article  CAS  PubMed  Google Scholar 

  38. Muwonge, A., Tripathi, J., Kunert, K., & Tripathi, L. (2016). Expressing stacked HRAP and PFLP genes in transgenic banana has no synergistic effect on resistance to Xanthomonas wilt disease. South + A1443 African Journal of Botany,104, 125–133.

    CAS  Google Scholar 

  39. Van Loon, L. C., & Van Strien, E. A. (1999). The families of pathogenesis related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology,55, 85–97.

    Google Scholar 

  40. Dayakar, B. V., Lin, H. J., Chen, C. H., Ger, M. J., Lee, B. H., Pai, C. H., et al. (2003). Ferredoxin from sweet pepper(Capsicum annuum L.) intensifying harpinpss mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Molecular Biology,51, 913–924.

    CAS  PubMed  Google Scholar 

  41. Huang, H. E., Ger, M. J., Yip, M. K., Chen, C. Y., Pandeya, A. K., & Feng, T. Y. (2004). A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (pflp). Physiological and Molecular Plant Pathology,64, 103–110.

    CAS  Google Scholar 

  42. Ganapathi, T. R., Higgs, N. S., Balint-Kurti, P. J., Arntzen, C. J., May, G. D., & Van Eck, J. M. (2001). Agrobacterium-mediated transformation of the embryogenic cell suspen-sion of the banana cultivar Rasthali (AAB). Plant Cell Reports,20, 157–162.

    CAS  PubMed  Google Scholar 

  43. Donnarumma, F., Paffetti, D., Fladung, M., Biricolti, S., Dieter, E., Altosaar, I., et al. (2011). Transgene copy number estimation and analysis of gene expression levels in Populus spp. transgenic lines. BMC Proceedings,5(7), P152.

    PubMed Central  Google Scholar 

  44. Karmakar, S., Molla, K. A., Das, K., Sarkar, S. N., Swapan, K., & Datta, K. (2017). Dual gene expression cassette is superior than single gene cassette for enhancing sheath blight tolerance in transgenic rice. Scientific Reports,7, 7900.

    PubMed  PubMed Central  Google Scholar 

  45. Passardi, F., Penel, C., & Dunand, C. (2004). Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science,9, 534–540.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ICAR-NPTC for funding and constant support to carry out research work and thankful to the Division of Plant Pathology, ICAR-IIHR for screening the transgenic plants. This is a part of Ph.D. dissertation work of first author.

Funding

This study was funded by the National Coordinator of Network Project on Transgenic Crops—Indian Council of Agricultural Research.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Dr. UTR, Dr. SHD and CS. Performed the experiments: CS and Dr. SHD. Analyzed the data: CS, Dr. UTR, Dr. SHD, UM. Paper: CS, Dr. UTR, Dr. SHD. Field evaluation: Dr.AKS and GHR

Corresponding author

Correspondence to T. R. Usharani.

Ethics declarations

Conflict of interest

Authors Mrs. Sunisha. C, Dr. Sowmya H.D, Dr. Usharani T.R, Mr. Umesha M, Dr.Arvindkumar Saxena, and Gopalkrishna H.R have received research grants from the National Coordinator of Network Project on Transgenic Crops—Indian Council of Agricultural Research.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunisha, C., Sowmya, H.D., Usharani, T.R. et al. Deployment of Stacked Antimicrobial Genes in Banana for Stable Tolerance Against Fusarium oxysporum f.sp. cubense Through Genetic Transformation. Mol Biotechnol 62, 8–17 (2020). https://doi.org/10.1007/s12033-019-00219-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00219-w

Keywords

Navigation