Skip to main content

Advertisement

Log in

Generation and Characterization of Fibroblast-Specific Basigin Knockout Mice

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Basigin is a well-known extracellular stimulator of fibroblasts and may confer resistance to apoptosis of fibroblasts in vitro under some pathological status, but its exact function in fibroblasts and the underlying mechanism remain poorly understood. The systematic Basigin gene knockout leads to the perinatal lethality of mice, which limits the delineation of its function in vivo. In this study, we generated a fibroblast-specific Basigin knock-out mouse model and demonstrated the successful deletion of Basigin in fibroblasts. The fibroblast-specific deletion of Basigin did not influence the growth, fertility and the general condition of the mice. No obvious differences were found in the size, morphology, and histological structure of the major organs, including heart, liver, spleen, lung and kidney, between the knockout mice and the control mice. The deletion of Basigin in fibroblasts did not induce apoptosis in the tissues of the major organs. These results provide the first evidence that the fibroblast-specific Basigin knock-out mice could be a useful tool for exploring the function of Basigin in fibroblasts in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iacono, K. T., Brown, A. L., Greene, M. I., & Saouaf, S. J. (2007). CD147 immunoglobulin superfamily receptor function and role in pathology. Experimental and Molecular Pathology, 83, 283–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crosnier, C., Bustamante, L. Y., Bartholdson, S. J., Bei, A. K., Theron, M., Uchikawa, M., Mboup, S., Ndir, O., Kwiatkowski, D. P., Duraisingh, M. T., Rayner, J. C., & Wright, G. J. (2011). Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature, 480, 534–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, M., Zhai, Q., Bharadwaj, U., Wang, H., Li, F., Fisher, W. E., Chen, C., & Yao, Q. (2006). Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer, 106, 2284–2294.

    Article  CAS  PubMed  Google Scholar 

  4. Belton, R. J. Jr., Chen, L., Mesquita, F. S., & Nowak, R. A. (2008). Basigin-2 is a cell surface receptor for soluble basigin ligand. Journal of Biological Chemistry, 283, 17805–17814.

    Article  CAS  PubMed  Google Scholar 

  5. Peng, F., Li, H., Ning, Z., Yang, Z., Li, H., Wang, Y., Chen, F., & Wu, Y. (2016). CD147 and prostate cancer: A systematic review and meta-analysis. PLoS ONE, 11, e0163678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xin, X., Zeng, X., Gu, H., Li, M., Tan, H., Jin, Z., Hua, T., Shi, R., & Wang, H. (2016). CD147/EMMPRIN overexpression and prognosis in cancer: A systematic review and meta-analysis. Scientific Reports, 6, 32804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyauchi, T., Masuzawa, Y., & Muramatsu, T. (1991). The basigin group of the immunoglobulin superfamily: Complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. The Journal of Biochemistry, 110, 770–774.

    Article  CAS  PubMed  Google Scholar 

  8. Grass, G. D., & Toole, B. P. (2015) How, with whom and when: An overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity, Bioscience Reports 36, e00283.

    Article  CAS  PubMed  Google Scholar 

  9. Hasaneen, N. A., Cao, J., Pulkoski-Gross, A., Zucker, S., & Foda, H. D. (2016). Extracellular matrix metalloproteinase inducer (EMMPRIN) promotes lung fibroblast proliferation, survival and differentiation to myofibroblasts. Respiratory Research, 17, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, J., Lu, Y., Qiu, S., Chen, Z. N., & Fan, Z. (2013). A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells. Cancer Letters, 335, 380–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cirri, P., & Chiarugi, P. (2011). Cancer associated fibroblasts: The dark side of the coin. American Journal of Cancer Research, 1, 482–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, J., Min, A., Gao, S., & Tang, Z. (2014). Genetic regulation and potentially therapeutic application of cancer-associated fibroblasts in oral cancer. Journal of Oral Pathology & Medicine, 43, 323–334.

    Article  CAS  Google Scholar 

  13. Kim, Y. H., Jung, J. C., Jung, S. Y., Kim, Y. I., Lee, K. W., & Park, Y. J. (2015). Cyclosporine a downregulates MMP-3 and MMP-13 expression in cultured pterygium fibroblasts. Cornea, 34, 1137–1143.

    Article  PubMed  Google Scholar 

  14. Kuwata, H., Yuzurihara, C., Kinoshita, N., Taki, Y., Ikegami, Y., Washio, S., Hirakawa, Y., Yoda, E., Aiuchi, T., Itabe, H., Nakatani, Y., & Hara, S. (2018). The group VIA calcium-independent phospholipase A2 and NFATc4 pathway mediates IL-1beta-induced expression of chemokines CCL2 and CXCL10 in rat fibroblasts. The FEBS Journal, 285, 2056–2070.

    Article  CAS  PubMed  Google Scholar 

  15. Weber, C. E., & Kuo, P. C. (2012). The tumor microenvironment. Surgical Oncology, 21, 172–177.

    Article  PubMed  Google Scholar 

  16. Du, W., Du, W., & Yu, H. (2018) The role of fibroblast growth factors in tooth development and incisor renewal, Stem Cells International 2018, 7549160.

    PubMed  PubMed Central  Google Scholar 

  17. LeBleu, V. S., & Kalluri, R. (2018) A peek into cancer-associated fibroblasts: Origins, functions and translational impact, Disease Models & Mechanisms. https://doi.org/10.1242/dmm.029447.

    Article  Google Scholar 

  18. Alguacil-Nunez, C., Ferrer-Ortiz, I., Garcia-Verdu, E., Lopez-Pirez, P., Llorente-Cortijo, I. M., & Sainz, B. Jr. (2018). Current perspectives on the crosstalk between lung cancer stem cells and cancer-associated fibroblasts. Critical Reviews in Oncology/Hematology, 125, 102–110.

    Article  PubMed  Google Scholar 

  19. Suzuki, K., Satoh, K., Ikeda, S., Sunamura, S., Otsuki, T., Satoh, T., Kikuchi, N., Omura, J., Kurosawa, R., Nogi, M., Numano, K., Sugimura, K., Aoki, T., Tatebe, S., Miyata, S., Mukherjee, R., Spinale, F. G., Kadomatsu, K., & Shimokawa, H. (2016). Basigin promotes cardiac fibrosis and failure in response to chronic pressure overload in mice. Arteriosclerosis Thrombosis and Vascular Biology, 36, 636–646.

    Article  CAS  Google Scholar 

  20. Tang, Y., Kesavan, P., Nakada, M. T., & Yan, L. (2004). Tumor–stroma interaction: Positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Molecular Cancer Research, 2, 73–80.

    CAS  PubMed  Google Scholar 

  21. Kanekura, T., Chen, X., & Kanzaki, T. (2002). Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. International Journal of Cancer, 99, 520–528.

    Article  CAS  PubMed  Google Scholar 

  22. Zhai, Y., Wu, B., Li, J., Yao, X. Y., Zhu, P., & Chen, Z. N. (2016). CD147 promotes IKK/IkappaB/NF-kappaB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Journal of Molecular Medicine, 94, 71–82.

    Article  CAS  PubMed  Google Scholar 

  23. Igakura, T., Kadomatsu, K., Taguchi, O., Muramatsu, H., Kaname, T., Miyauchi, T., Yamamura, K., Arimura, K., & Muramatsu, T. (1996). Roles of basigin, a member of the immunoglobulin superfamily, in behavior as to an irritating odor, lymphocyte response, and blood–brain barrier. Biochemical and Biophysical Research Commununications, 224, 33–36.

    Article  CAS  Google Scholar 

  24. Kuno, N., Kadomatsu, K., Fan, Q. W., Hagihara, M., Senda, T., Mizutani, S., & Muramatsu, T. (1998). Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Letters, 425, 191–194.

    Article  CAS  PubMed  Google Scholar 

  25. Orban, P. C., Chui, D., & Marth, J. D. (1992). Tissue- and site-specific DNA recombination in transgenic mice. Proceedings of the National Academy of Sciences, 89, 6861–6865.

    Article  CAS  Google Scholar 

  26. Yao, H., Teng, Y., Sun, Q., Xu, J., Chen, Y. T., Hou, N., Cheng, X., Yang, X., & Chen, Z. N. (2013). Important functional roles of basigin in thymocyte development and T cell activation. International Journal of Biological Science, 10, 43–52.

    Article  CAS  Google Scholar 

  27. Tsutsumi, R., Xie, C., Wei, X., Zhang, M., Zhang, X., Flick, L. M., Schwarz, E. M., & O’Keefe, R. J. (2009). PGE2 signaling through the EP4 receptor on fibroblasts upregulates RANKL and stimulates osteolysis. Journal of Bone and Mineral Research, 24, 1753–1762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yurchenko, V., Constant, S., & Bukrinsky, M. (2006). Dealing with the family: CD147 interactions with cyclophilins. Immunology, 117, 301–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huet, E., Gabison, E. E., Mourah, S., & Menashi, S. (2008). Role of emmprin/CD147 in tissue remodeling. Connective Tissue Research, 49, 175–179.

    Article  CAS  PubMed  Google Scholar 

  30. Weidle, U. H., Scheuer, W., Eggle, D., Klostermann, S., & Stockinger, H. (2010). Cancer-related issues of CD147. Cancer Genomics & Proteomics, 7, 157–169.

    CAS  Google Scholar 

  31. Zhou, Q., Zhu, Y., Deng, Z., Long, H., Zhang, S., & Chen, X. (2011). VEGF and EMMPRIN expression correlates with survival of patients with osteosarcoma. Surgical Oncology, 20, 13–19.

    Article  CAS  PubMed  Google Scholar 

  32. Kanekura, T., & Chen, X. (2010). CD147/basigin promotes progression of malignant melanoma and other cancers. Journal of Dermatological Science, 57, 149–154.

    Article  CAS  PubMed  Google Scholar 

  33. Gabison, E. E., Hoang-Xuan, T., Mauviel, A., & Menashi, S. (2005). EMMPRIN/CD147, an MMP modulator in cancer, development and tissue repair. Biochimie, 87, 361–368.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, X., Su, J., Zhou, Y., Xie, X., Peng, C., Yuan, Z., & Chen, X. (2017). Repressing CD147 is a novel therapeutic strategy for malignant melanoma. Oncotarget, 8, 25806–25813.

    PubMed  PubMed Central  Google Scholar 

  35. Zhu, X., Song, Z., Zhang, S., Nanda, A., & Li, G. (2014). CD147: A novel modulator of inflammatory and immune disorders. Current Medicinal Chemistry, 21, 2138–2145.

    Article  CAS  PubMed  Google Scholar 

  36. Hatanaka, M., Higashi, Y., Fukushige, T., Baba, N., Kawai, K., Hashiguchi, T., Su, J., Zeng, W., Chen, X., & Kanekura, T. (2014). Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts. Anticancer Research, 34, 7091–7096.

    CAS  PubMed  Google Scholar 

  37. Braundmeier, A. G., Dayger, C. A., Mehrotra, P., Belton, R. J. Jr., & Nowak, R. A. (2012). EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells. Reproductive Science, 19, 1292–1301.

    Article  CAS  Google Scholar 

  38. Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V. J., Richardson, A. L., & Weinberg, R. A. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.

    Article  CAS  Google Scholar 

  39. Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., Washington, M. K., Neilson, E. G., & Moses, H. L. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303, 848–851.

    Article  CAS  Google Scholar 

  40. Iwano, M., Plieth, D., Danoff, T. M., Xue, C., Okada, H., & Neilson, E. G. (2002). Evidence that fibroblasts derive from epithelium during tissue fibrosis. The Journal of Clinical Investigation, 110, 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Intasai, N., Mai, S., Kasinrerk, W., & Tayapiwatana, C. (2006). Binding of multivalent CD147 phage induces apoptosis of U937 cells. International Immunology, 18, 1159–1169.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, S., Chen, C., Liu, S., Zeng, W., Su, J., Wu, L., Luo, Z., Zhou, S., Li, Q., Zhang, J., Kuang, Y., & Chen, X. (2013). CD147 promotes MTX resistance by immune cells through up-regulating ABCG2 expression and function. Journal of Dermatological Science, 70, 182–189.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31371376, 81572802, 81372595), the National Basic Research Program of China (2015CB553700) and the State Key Laboratory of Cancer Biology Project (CBSKL2017Z06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Xu or Zhi-Nan Chen.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest in this work.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XD., Zhang, MY., Chen, YT. et al. Generation and Characterization of Fibroblast-Specific Basigin Knockout Mice. Mol Biotechnol 61, 111–121 (2019). https://doi.org/10.1007/s12033-018-0141-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0141-0

Keywords

Navigation