Skip to main content

Advertisement

Log in

In silico study of polyphenols as potential inhibitors of MALT1 protein in non-Hodgkin lymphoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Non-Hodgkin lymphoma (NHL) is one of the most common cancer types. Deregulated signaling pathways can trigger certain NHL subtypes, including Diffuse Large B-cell lymphoma. NF-ĸB signaling pathway, which is responsible for the proliferation, growth, and survival of cells, has an essential role in lymphoma development. Although different signals control NF-ĸB activation in various lymphoid malignancies, the characteristic one is the CARD11-BCL10-MALT1 (CBM) complex. The CBM complex is responsible for the initiation of adaptive immune response. Our study is focused on the molecular docking of ten polyphenols as potential CARD11-BCL10-MALT1 complex inhibitors, essentially through MALT1 inhibition. Molecular docking was performed by Auto Dock Tools and AutoDock Vina tool, while SwissADME was used for drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of the ligands. Out of 66 ligands that were used in this study, we selected and visualized five. Selection criteria were based on the binding energy score and position of the ligands on the used protein. 2D and 3D visualizations showed interactions of ligands with the protein. Five ligands are considered potential inhibitors of MALT1, thus affecting NF-ĸB signaling pathway. However, additional in vivo and in vitro studies are required to confirm their mechanism of inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data analyzed in this study have been either provided or are publicly available in the referred databases.

References

  1. Sleire L, Førde HE, Netland IA, Leiss L, Skeie BS, Enger PØ. Drug repurposing in cancer. Pharmacol Res. 2017;124:74–91. https://doi.org/10.1016/j.phrs.2017.07.013.

    Article  CAS  PubMed  Google Scholar 

  2. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769–92. https://doi.org/10.3390/cancers6031769.

    Article  PubMed Central  Google Scholar 

  3. Padala SA, Kallam A. Diffuse large B-cell lymphoma. In: StatPearls. Treasure Island: StatPearls Publishing; 2023 [cited 2023 Jun 15]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK557796/.

  4. Carreras J, Hiraiwa S, Kikuti YY, Miyaoka M, Tomita S, Ikoma H, et al. Artificial neural networks predicted the overall survival and molecular subtypes of diffuse large B-cell lymphoma using a pancancer immune-oncology panel. Cancers. 2021;13(24):6384. https://doi.org/10.3390/cancers13246384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carreras J, Roncador G, Hamoudi R. Artificial intelligence predicted overall survival and classified mature B-cell neoplasms based on immuno-oncology and immune checkpoint panels. Cancers. 2022;14(21):5318. https://doi.org/10.3390/cancers14215318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, et al. The international consensus classification of mature lymphoid neoplasms: a report from the clinical advisory committee. Blood. 2022;140(11):1229–53. https://doi.org/10.1182/blood.2022015851.

    Article  CAS  PubMed Central  Google Scholar 

  7. Jamil A, Mukkamalla SKR. Lymphoma. In: StatPearls. Treasure Island: StatPearls Publishing, 2022 [cited 2022 Mar 17]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK560826/.

  8. Lewis WD, Lilly S, Jones KL. Lymphoma: diagnosis and treatment. Am Fam Physician. 2020;101(1):34–41.

    PubMed  Google Scholar 

  9. National Cancer Institute. Non-Hodgkin lymphoma—cancer stat facts. SEER. 18 March 2022. https://seer.cancer.gov/statfacts/html/nhl.html.

  10. Bezombes C, Pérez-Galán P. Immunotherapies in non-Hodgkin’s lymphoma. Cancers. 2021;13(14):3625. https://doi.org/10.3390/cancers13143625.

    Article  PubMed Central  Google Scholar 

  11. Sheikh S, Migliorini D, Lang N. CAR T-based therapies in lymphoma: a review of current practice and perspectives. Biomedicines. 2022;10(8):1960. https://doi.org/10.3390/biomedicines10081960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun R, Yu Q, Young KH. Critically dysregulated signaling pathways and clinical utility of the pathway biomarkers in lymphoid malignancies. Chronic Dis Transl Med. 2018;4(1):29–44. https://doi.org/10.1016/j.cdtm.2018.02.001.

    Article  PubMed Central  Google Scholar 

  13. Xu W, Berning P, Lenz G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood. 2021;138(13):1110–9. https://doi.org/10.1182/blood.2020006784.

    Article  CAS  PubMed  Google Scholar 

  14. Gu Y, Mohammad IS, Liu Z. Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors. Oncol Lett. 2020;19(4):2585–94. https://doi.org/10.3892/ol.2020.11394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Young RM, Shaffer AL, Phelan JD, Staudt LM. B-cell receptor signaling in diffuse large B-cell lymphoma. Semin Hematol. 2015;52(2):77–85. https://doi.org/10.1053/j.seminhematol.2015.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol. 2010;2(6):a000109. https://doi.org/10.1101/cshperspect.a000109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kennedy R, Klein U. Aberrant activation of NF-κB signalling in aggressive lymphoid malignancies. Cells. 2018;7(11):189. https://doi.org/10.3390/cells7110189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang TP, Vancurova I. NFκB function and regulation in cutaneous T-cell lymphoma. Am J Cancer Res. 2013;3(5):433–45.

    PubMed Central  Google Scholar 

  19. Balaji S, Ahmed M, Lorence E, Yan F, Nomie K, Wang M. NF-κB signaling and its relevance to the treatment of mantle cell lymphoma. J Hematol OncolJ Hematol Oncol. 2018;11(1):83. https://doi.org/10.1186/s13045-018-0621-5.

    Article  CAS  Google Scholar 

  20. Roy P, Sarkar UA, Basak S. The NF-κB activating pathways in multiple myeloma. Biomedicines. 2018;6(2):59. https://doi.org/10.3390/biomedicines6020059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grondona P, Bucher P, Schulze-Osthoff K, Hailfinger S, Schmitt A. NF-κB activation in lymphoid malignancies: genetics, signaling, and targeted therapy. Biomedicines. 2018;6(2):38. https://doi.org/10.3390/biomedicines6020038.

    Article  CAS  PubMed Central  Google Scholar 

  22. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. https://doi.org/10.1038/s41392-020-00312-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun SC. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21(1):71–85. https://doi.org/10.1038/cr.2010.177.

    Article  CAS  PubMed  Google Scholar 

  25. Schlauderer F, Seeholzer T, Desfosses A, Gehring T, Strauss M, Hopfner KP, et al. Molecular architecture and regulation of BCL10-MALT1 filaments. Nat Commun. 2018;9(1):4041. https://doi.org/10.1038/s41467-018-06573-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meininger I, Krappmann D. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biol Chem. 2016;397(12):1315–33. https://doi.org/10.1515/hsz-2016-0216.

    Article  CAS  PubMed  Google Scholar 

  27. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14(3):289–301. https://doi.org/10.1016/s1097-2765(04)00236-9.

    Article  CAS  PubMed  Google Scholar 

  28. Israël L, Bornancin F. Ways and waves of MALT1 paracaspase activation. Cell Mol Immunol. 2018;15(1):8–11. https://doi.org/10.1038/cmi.2017.77.

    Article  CAS  PubMed  Google Scholar 

  29. Ginster S, Bardet M, Unterreiner A, Malinverni C, Renner F, Lam S, et al. Two antagonistic MALT1 auto-cleavage mechanisms reveal a role for TRAF6 to unleash MALT1 activation. PLoS ONE. 2017;12(1):e0169026. https://doi.org/10.1371/journal.pone.0169026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baens M, Bonsignore L, Somers R, Vanderheydt C, Weeks SD, Gunnarsson J, et al. MALT1 auto-proteolysis is essential for NF-κB-dependent gene transcription in activated lymphocytes. PLoS ONE. 2014;9(8):e103774. https://doi.org/10.1371/journal.pone.0103774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaworski M, Thome M. The paracaspase MALT1: biological function and potential for therapeutic inhibition. Cell Mol Life Sci. 2016;73(3):459–73. https://doi.org/10.1007/s00018-015-2059-z.

    Article  CAS  PubMed  Google Scholar 

  32. Izuegbuna OO. Polyphenols: chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr. 2022;26(9):1008893. https://doi.org/10.3389/fnut.2022.1008893.

    Article  CAS  Google Scholar 

  33. Chauhan A, Islam AU, Prakash H, Singh S. Phytochemicals targeting NF-κB signaling: potential anti-cancer interventions. J Pharm Anal. 2022;12(3):394–405. https://doi.org/10.1016/j.jpha.2021.07.002.

    Article  PubMed  Google Scholar 

  34. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221–34. https://doi.org/10.1007/s10822-013-9644-8.

    Article  CAS  PubMed  Google Scholar 

  35. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. https://doi.org/10.1038/srep42717.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Karami TK, Hailu S, Feng S, Graham R, Gukasyan HJ. Eyes on lipinski’s rule of five: a new, “rule of thumb” for physicochemical design space of ophthalmic drugs. J Ocul Pharmacol Ther. 2022;38(1):43–55. https://doi.org/10.1089/jop.2021.0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery 1: a qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55–68. https://doi.org/10.1021/cc9800071.

    Article  CAS  PubMed  Google Scholar 

  38. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23. https://doi.org/10.1021/jm020017n.

    Article  CAS  PubMed  Google Scholar 

  39. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43(21):3867–77. https://doi.org/10.1021/jm000292e.

    Article  CAS  PubMed  Google Scholar 

  40. Yadav R, Imran M, Dhamija P, Chaurasia DK, Handu S. Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. J Biomol Struct Dyn. 2021;39(17):6617–32. https://doi.org/10.1080/07391102.2020.1796812.

    Article  CAS  PubMed  Google Scholar 

  41. Grogan S, Preuss CV. Pharmacokinetics. In: StatPearls. Treasure Island: StatPearls Publishing; 2023 [cited 2023 Jun 11]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK557744/.

  42. Samuels ER, Sevrioukova I. Inhibition of human CYP3A4 by rationally designed ritonavir-like compounds: impact and interplay of the side group functionalities. Mol Pharm. 2018;15(1):279–88. https://doi.org/10.1021/acs.molpharmaceut.7b00957.

    Article  CAS  PubMed  Google Scholar 

  43. Fontán L, Qiao Q, Hatcher JM, Casalena G, Us I, Teater M, et al. Specific covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma growth. J Clin Invest. 2018;128(10):4397–412. https://doi.org/10.1172/JCI99436.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ferch U, Kloo B, Gewies A, Pfänder V, Düwel M, Peschel C, et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell–like diffuse large B cell lymphoma cells. J Exp Med. 2009;206(11):2313–20. https://doi.org/10.1084/jem.20091167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, et al. Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget. 2015;6(31):31216–32. https://doi.org/10.18632/oncotarget.5157.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu DG, Yu P, Li JW, Jiang P, Sun J, Wang HZ, et al. Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-κB activation in pancreatic cancer cells. Toxicol Lett. 2014;224(1):157–64. https://doi.org/10.1016/j.toxlet.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  47. Liao SC, Hsu HW, Chuang KL, Huang ZY, Lin KT, Hsu WH, et al. Using the pleiotropic characteristics of curcumin to validate the potential application of a novel gene expression screening platform. Nutrients. 2019;11(6):1397. https://doi.org/10.3390/nu11061397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, et al. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. 2012;12(2):368–77. https://doi.org/10.1016/j.intimp.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  49. Ji G, Zhang Y, Yang Q, Cheng S, Hao J, Zhao X, et al. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-κB following AMP kinase activation in RAW 264.7 macrophages. PLoS ONE. 2012;7(12):e53101. https://doi.org/10.1371/journal.pone.0053101.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Abas Sezer. Writing, review, and editing were performed by LM, while conceptualization and supervision were performed by BA. The first draft of the manuscript was written by AS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Betül Akçeşme.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezer, A., Mahmutović, L. & Akçeşme, B. In silico study of polyphenols as potential inhibitors of MALT1 protein in non-Hodgkin lymphoma. Med Oncol 41, 37 (2024). https://doi.org/10.1007/s12032-023-02261-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02261-w

Keywords

Navigation