Skip to main content

Advertisement

Log in

Lysates from the probiotic bacterium Streptococcus thermophilus enhances the survival of T cells and triggers programmed cell death in neuroblastoma cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Neuroblastoma is the most common brain solid tumor in infancy. Despite the availability of numerous approaches like immunotherapy, surgery, chemotherapy, and radiotherapy, neuroblastoma frequently develops resistance and recurs. Immunotherapy is one of the most promising approaches and PD-L1 antibody blocking is the phenomena used to inhibit PD-1 receptors to increase and improve cytotoxic T cells toward cancer. Numerous studies underlined the critical role of probiotics on immune system development and modulation in addition to possible role in inducing apoptosis in cancer cells. In this study, a Streptococcus thermophilus strain, isolated from a local yogurt, was used as it is considered a potential probiotic due to its tolerance lower pH, bile acid, antibiotic suitability, and blood hemolysis. Our results showed that S. thermophilus lysates played as an immune checkpoint modulator at 25 µg/ml dose boosting PD-L1 transcripts and protein levels in SH-SY5Y neuroblastoma cell line. Interestingly, co-culture between SH-SY5Y and Jurkat T cells in the presence of blocking PD-L1 antibodies increased Jurkat T-cell viability compering to control without lysate. On the other hand, annexin-V/7-AAD, qPCR and western blot results showed that S. thermophilus lysates at 200 and 400 µg/ml decreased SH-SY5Y cell viability and increased apoptotic marker genes transcription and caspase-3 and caspase-9 protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article.

References

  1. Colon NC, Chung DH. Neuroblastoma. Adv Pediatr. 2011;58(1):297–311. https://doi.org/10.1016/j.yapd.2011.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall C, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2016(2):16078. https://doi.org/10.1038/nrdp.2016.78.

    Article  Google Scholar 

  3. Saulnier SGL, Brard L, Straub JA, Dorf L, Illeyne S, Kalkunte S, et al. Nifurtimox induces apoptosis of neuroblastoma cells in vitro and in vivo. J Pediatr Hematol Oncol. 2009;31(3):187–93. https://doi.org/10.1097/MPH.0b013e3181984d91.

    Article  Google Scholar 

  4. Lu K, Dong S, Wu X, Jin R, Chen H. Probiotics in cancer. Front Oncol. 2021;11: 638148. https://doi.org/10.3389/fonc.2021.638148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dargahi N, Johnson JC, Apostolopoulos V. Immune modulatory effects of probiotic Streptococcus thermophilus on human monocytes. Biologics. 2020;1(3):396–415. https://doi.org/10.3390/BIOLOGICS1030023/S1.

    Article  Google Scholar 

  6. Yamamoto E, Watanabe R, Koizumi A, Ishida T, Kimura K. Isolation and characterization of Streptococcus thermophilus possessing prtS gene from raw milk in Japan. BMFH. 2020;39(3):169–74. https://doi.org/10.12938/bmfh.2019-052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kekkonen RA, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I. Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-γ production. World J Gastroenterol. 2008;14(8):1192. https://doi.org/10.3748/WJG.14.1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bilecen K, Yaman G, Ciftci U, Laleli YR. Performances and reliability of Bruker Microflex LT and VITEK MS MALDI-TOF mass spectrometry systems for the identification of clinical microorganisms. Biomed Res Int. 2015. https://doi.org/10.1155/2015/516410.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Letourneau J, Levesque C, Berthiaume F, Jacques M, Mourez M. In vitro assay of bacterial adhesion onto mammalian epithelial cells. J Vis Exp. 2011;51: e2783. https://doi.org/10.3791/2783.

    Article  CAS  Google Scholar 

  10. Hudzicki J. Kirby–Bauer disk diffusion susceptibility test protocol. ASM. 2009;15:55–63.

    Google Scholar 

  11. Brandi J, Cheri S, Manfredi M, Di Carlo C, Vanella VV, Federici F, et al. Exploring the wound healing, anti-inflammatory, anti-pathogenic and proteomic effects of lactic acid bacteria on keratinocytes. Sci Rep. 2020;10(1):11572. https://doi.org/10.1038/s41598-020-68483-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sahler JM. Salmonella enterica serovar typhimurium increases functional PD-L1 synergistically with gamma interferon in intestinal epithelial cells via salmonella pathogenicity island 2. ASM. 2018;86(5):1–14. https://doi.org/10.1128/IAI.00674-17.

    Article  Google Scholar 

  13. Mahmood T, Yang PC. Western blot: technique, theory, and trouble shooting. N Am J Med Sci. 2012;4(9):429. https://doi.org/10.4103/1947-2714.100998.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cui Y, Xu T, Qu X, Hu T, Jiang X, Zhao C. New insights into various production characteristics of Streptococcus thermophilus strains. Int J Mol Sci. 2016;17(10):1701. https://doi.org/10.3390/ijms17101701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saito Y, Tonouchi A, Harada Y, Ogino R, Toba T. Isolation of Streptococcus thermophilus strains from plants in Japan and their application to milk fermentation. Food Sci Technol Res. 2020;26(1):1–8. https://doi.org/10.3136/fstr.26.1.

    Article  CAS  Google Scholar 

  16. Pombert JF, Sistek V, Boissinot M, Frenette M. Evolutionary relationships among salivarius streptococci as inferred from multilocus phylogenies based on 16S rRNA-encoding, recA, secA, and secY gene sequences. BMC Microbiol. 2009;9:1–9. https://doi.org/10.1186/1471-2180-9-232.

    Article  CAS  Google Scholar 

  17. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. IJERPH. 2014;11(5):4745–67. https://doi.org/10.3390/ijerph110504745.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Koronakis V, Hughes C (2002) Hemolysin. In: Escherichia coli. Academic Press, pp 361–378

  19. Ban OH, Oh S, Park C, et al. Safety assessment of Streptococcus thermophilus IDCC 2201 used for product manufacturing in Korea. Food Sci Nutr. 2020;8(11):6269–74. https://doi.org/10.1002/fsn3.1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krawczyk B, Wityk P, Gałęcka M, Michalik M. The many faces of Enterococcus spp.-commensal, probiotic and opportunistic pathogen. Microorganisms. 2021;9(9):1900. https://doi.org/10.3390/microorganisms9091900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tarrah A, Castilhos JD, Rossi RC, Duarte VD, Ziegler DR, Corich V, et al. In vitro probiotic potential and anti-cancer activity of newly isolated folate-producing Streptococcus thermophilus strains. Front Microbiol. 2018;2018(9):2214. https://doi.org/10.3389/fmicb.2018.02214.

    Article  Google Scholar 

  22. Shui L, Yang X, Li J, Yi C, Sun Q, Zhu H. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front Immunol. 2020;10:2989. https://doi.org/10.3389/fimmu.2019.02989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pan SW, Shu CC, Huang JR, Lee CC, Tseng YH. PD-L1 expression in monocytes correlates with bacterial burden and treatment outcomes in active pulmonary tuberculosis. Int J Mol Sci. 2022;23(3):1619. https://doi.org/10.3390/ijms23031619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dondero A, Pastorino F, Della CM, Corrias MV, Morandi F, Pistoia V, et al. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Onco Immunol. 2015;5(1): e1064578. https://doi.org/10.1080/2162402X.2015.1064578.

    Article  CAS  Google Scholar 

  25. Dargahi N, Johnson J, Apostolopoulos V. Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS ONE. 2020;15(2): e0228531. https://doi.org/10.1371/journal.pone.0228531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mizuno H, Tomotsune K, Islam MA, Funabashi R, Albarracin L, Ikeda-Ohtsubo W, et al. Exopolysaccharides from Streptococcus thermophilus ST538 modulate the antiviral innate immune response in porcine intestinal epitheliocytes. Front Microbiol. 2020;11:894. https://doi.org/10.3389/fmicb.2020.00894.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fankhauser SC, Starnbach MN. PD-L1 limits the mucosal CD8+ T cell response to Chlamydia trachomatis. J Immun. 2014;192(3):1079–90. https://doi.org/10.4049/JIMMUNOL.1301657.

    Article  CAS  PubMed  Google Scholar 

  28. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asoudeh-Fard A, Barzegari A, Dehnad A, Bastani S, Golchin A, Omidi Y. Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. BioImpacts. 2017;7(3):193–8. https://doi.org/10.15171/bi.2017.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shang F, Jiang X, Wang H, Chen S, Wang X, Liu Y, et al. The inhibitory effects of probiotics on colon cancer cells: in vitro and in vivo studies. JGO. 2020;11(6):1224–32. https://doi.org/10.21037/jgo-20-573.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mojibi P, Tafvizi F, Bikhof TM. Cell-bound exopolysaccharide extract from indigenous probiotic bacteria induce apoptosis in ht-29 cell-line. Iran J Pathol. 2014;14(1):41–51. https://doi.org/10.30699/IJP.14.1.41.

    Article  Google Scholar 

  32. Li Q, Hu W, Liu WX, Zhao LY, Huang D. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting β-galactosidase. Gastroenterology. 2021;160(4):1179-93.e14. https://doi.org/10.1053/J.GASTRO.2020.09.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SA, EG, ICA, KB, and HV conceived and designed the research. SA and KB performed bacterial isolation, identification as well as microbiological analysis. Molecular and anticancer activity analyses have been performed by EG, ICA, SA and HV. All authors analyzed data, read and approved the manuscript.

Corresponding author

Correspondence to Safaa Altves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in this research.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altves, S., Guclu, E., Cinar Ayan, I. et al. Lysates from the probiotic bacterium Streptococcus thermophilus enhances the survival of T cells and triggers programmed cell death in neuroblastoma cells. Med Oncol 40, 315 (2023). https://doi.org/10.1007/s12032-023-02186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02186-4

Keywords

Navigation