Skip to main content

Advertisement

Log in

Role of plectin and its interacting molecules in cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Plectin, as the cytolinker and scaffolding protein, are widely expressed and abundant in many tissues, and has involved in various cellular activities contributing to tumorigenesis, such as cell adhesion, migration, and signal transduction. Due to the specific expression and differential localization of plectin in cancer, most researchers focus on the role of plectin in cancer, and it has emerged as a potent driver of malignant hallmarks in many human cancers, which provides the possibility for plectin to be widely used as a biomarker and therapeutic target in the early diagnosis and targeted drug delivery of the disease. However, there is still a lack of systematic review on the interaction molecules and mechanism of plectin. Herein, we summarized the structure, expression and function of plectin, and mainly focused on recent studies on the functional and physical interactions between plectin and its interacting molecules, shedding light on the potential of targeting plectin for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data and materials presented in this study are available on request from the corresponding author.

References

  1. Wiche G. Role of plectin in cytoskeleton organization and dynamics. J Cell Sci. 1998;11:2477–86.

    Article  Google Scholar 

  2. Wiche G, Winter L. Plectin isoforms as organizers of intermediate filament cytoarchitecture. BioArchitecture. 2011;1:14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Svitkina T, Verkhovsky A, Borisy G. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol. 1996;135:991–1007.

    Article  CAS  PubMed  Google Scholar 

  4. Foisner R, Bohn W, Mannweiler K, Wiche G. Distribution and ultrastructure of plectin arrays in subclones of rat glioma C6 cells differing in intermediate filament protein (vimentin) expression. J Struct Biol. 1995;115:304–17.

    Article  CAS  PubMed  Google Scholar 

  5. Jeon J, Suh H, Kim M, Han H. Glucosamine-induced reduction of integrin β4 and plectin complex stimulates migration and proliferation in mouse embryonic stem cells. Stem Cells Dev. 2013;22:2975–89.

    Article  CAS  PubMed  Google Scholar 

  6. Osmanagic-Myers S, Gregor M, Walko G, Burgstaller G, Reipert S, Wiche G. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J Cell Biol. 2006;174:557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takawira D, Budinger G, Hopkinson S, Jones J. A dystroglycan/plectin scaffold mediates mechanical pathway bifurcation in lung epithelial cells. J Biol Chem. 2011;286:6301–10.

    Article  CAS  PubMed  Google Scholar 

  8. Osmanagic-Myers S, Wiche G. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: a novel mechanism to regulate protein kinase C activity. J Biol Chem. 2004;279:18701–10.

    Article  CAS  PubMed  Google Scholar 

  9. Andrä K, Nikolic B, Stöcher M, Drenckhahn D, Wiche G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Gene Dev. 1998;12:3442–51.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rezniczek G, de Pereda J, Reipert S, Wiche G. Linking integrin alpha6beta4-based cell adhesion to the intermediate filament cytoskeleton: direct interaction between the beta4 subunit and plectin at multiple molecular sites. J Cell Biol. 1998;141:209–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kostan J, Gregor M, Walko G, Wiche G. Plectin isoform-dependent regulation of keratin-integrin alpha6beta4 anchorage via Ca2+/calmodulin. J Biol Chem. 2009;284:18525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niwa T, Saito H, Imajoh-ohmi S, Kaminishi M, Seto Y, Miki Y, et al. BRCA2 interacts with the cytoskeletal linker protein plectin to form a complex controlling centrosome localization. Cancer Sci. 2009;100:2115–25.

    Article  CAS  PubMed  Google Scholar 

  13. Fish L, Khoroshkin M, Navickas A, Garcia K, Culbertson B, Hänisch B, et al. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science. 2021. https://doi.org/10.1126/science.abc7531.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu P, Babicky M, Jaquish D, French R, Marayuma K, Mose E, et al. The RON-receptor regulates pancreatic cancer cell migration through phosphorylation-dependent breakdown of the hemidesmosome. Int J Cancer. 2012;131:1744–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sabbir M, Dillon R, Mowat M. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation. Biol Open. 2016;5:452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katada K, Tomonaga T, Satoh M, Matsushita K, Tonoike Y, Kodera Y, et al. Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J Proteomics. 2012;75:1803–15.

    Article  CAS  PubMed  Google Scholar 

  17. Buckup M, Rice M, Hsu E, Garcia-Marques F, Liu S, Aslan M, et al. Plectin is a regulator of prostate cancer growth and metastasis. Oncogene. 2021;40:663–76.

    Article  CAS  PubMed  Google Scholar 

  18. Shin S, Smith J, Rezniczek G, Pan S, Chen R, Brentnall T, et al. Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110:19414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raymond A, Gao B, Girard L, Minna J, Gomika UD. Unbiased peptoid combinatorial cell screen identifies plectin protein as a potential biomarker for lung cancer stem cells. Sci Rep. 2019;9:14954.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Zhao Z, Liu H, Fetse J, Jain A, Lin C, et al. Development of a tumor-responsive nanopolyplex targeting pancreatic cancer cells and stroma. ACS Appl Mater Interfaces. 2019;11:45390–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dasa S, Diakova G, Suzuki R, Mills A, Gutknecht M, Klibanov A, et al. Plectin-targeted liposomes enhance the therapeutic efficacy of a PARP inhibitor in the treatment of ovarian cancer. Theranostics. 2018;8:2782–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bausch D, Mino-Kenudson M, Fernández-Del Castillo C, Warshaw A, Kelly K, Thayer S. Plectin-1 is a biomarker of malignant pancreatic intraductal papillary mucinous neoplasms. J Gastrointest Surg. 2009;13:1948–54 (discussion 54).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pytela R, Wiche G. High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments. Proc Natl Acad Sci USA. 1980;77:4808–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castañón M, Walko G, Winter L, Wiche G. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol. 2013;140:33–53.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Foisner R, Wiche G. Structure and hydrodynamic properties of plectin molecules. J Mol Biol. 1987;198:515–31.

    Article  CAS  PubMed  Google Scholar 

  26. Wiche G, Becker B, Luber K, Weitzer G, Castañon M, Hauptmann R, et al. Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil. J Cell Biol. 1991;114:83–99.

    Article  CAS  PubMed  Google Scholar 

  27. Ortega E, Buey R, Sonnenberg A, de Pereda J. The structure of the plakin domain of plectin reveals a non-canonical SH3 domain interacting with its fourth spectrin repeat. J Biol Chem. 2011;286:12429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fuchs P, Zörer M, Rezniczek G, Spazierer D, Oehler S, Castañón M, et al. Unusual 5’ transcript complexity of plectin isoforms: novel tissue-specific exons modulate actin binding activity. Hum Mol Genet. 1999;8:2461–72.

    Article  CAS  PubMed  Google Scholar 

  29. Walko G, Vukasinovic N, Gross K, Fischer I, Sibitz S, Fuchs P, et al. Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. Plos Genet. 2011;7:e1002396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Janda L, Damborský J, Rezniczek G, Wiche G. Plectin repeats and modules: strategic cysteines and their presumed impact on cytolinker functions. BioEssays. 2001;23:1064–9.

    Article  CAS  PubMed  Google Scholar 

  31. Nikolic B, Mac Nulty E, Mir B, Wiche G. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J Cell Biol. 1996;134:1455–67.

    Article  CAS  PubMed  Google Scholar 

  32. Kelly K, Bardeesy N, Anbazhagan R, Gurumurthy S, Berger J, Alencar H, et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med. 2008;5:e85.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu Y, Tang Y, Xie S, Zheng X, Zhang S, Mao J, et al. Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics. 2020;10:1151–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen X, Zhou H, Li X, Duan N, Hu S, Liu Y, et al. Plectin-1 targeted Dual-modality nanoparticles for pancreatic cancer imaging. EBioMedicine. 2018;30:129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Konkalmatt P, Deng D, Thomas S, Wu M, Logsdon C, French B, et al. Plectin-1 targeted AAV vector for the molecular imaging of pancreatic cancer. Front Oncol. 2013;3:84.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bausch D, Thomas S, Mino-Kenudson M, Fernández-del C, Bauer T, Williams M, et al. Plectin-1 as a novel biomarker for pancreatic cancer. Clinical Cancer Res. 2011;17:302–9.

    Article  CAS  Google Scholar 

  37. Oto A, Eltorky M, Dave A, Ernst R, Chen K, Rampy B, et al. Mimicks of pancreatic malignancy in patients with chronic pancreatitis: correlation of computed tomography imaging features with histopathologic findings. Curr Probl Diagn Radiol. 2006;35:199–205.

    Article  PubMed  Google Scholar 

  38. Liu Y, Ho C, Cheng C, Pei R, Hsu Y, Yeh K, et al. Pleomorphism of cancer cells with the expression of plectin and concept of filament bundles in human hepatocellular carcinoma. Res Commun Mol Pathol Pharmacol. 2007;120:43–54.

    PubMed  Google Scholar 

  39. Cheng C, Lai Y, Lai Y, Hsu Y, Chao W, Sia K, et al. Transient knockdown-mediated deficiency in plectin alters hepatocellular motility in association with activated FAK and Rac1-GTPase. Cancer Cell Int. 2015;15:29.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M, Claudy A. Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res. 1999;19:2929–38.

    CAS  PubMed  Google Scholar 

  41. Kadeer A, Maruyama T, Kajita M, Morita T, Sasaki A, Ohoka A, et al. Plectin is a novel regulator for apical extrusion of RasV12-transformed cells. Sci Rep. 2017;7:44328.

    Article  PubMed  PubMed Central  Google Scholar 

  42. McInroy L, Määttä A. Plectin regulates invasiveness of SW480 colon carcinoma cells and is targeted to podosome-like adhesions in an isoform-specific manner. Exp Cell Res. 2011;317:2468–78.

    Article  CAS  PubMed  Google Scholar 

  43. Stegh A, Herrmann H, Lampel S, Weisenberger D, Andrä K, Seper M, et al. Identification of the cytolinker plectin as a major early in vivo substrate for caspase 8 during CD95- and tumor necrosis factor receptor-mediated apoptosis. Mol Cell Biol. 2000;20:5665–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burgstaller G, Gregor M, Winter L, Wiche G. Keeping the vimentin network under control: cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol Biol Cell. 2010;21:3362–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiu Y, Lehtimäki J, Tojkander S, Cheng F, Jäälinoja H, Liu X, et al. Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep. 2015;11:1511–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kidd M, Shumaker D, Ridge K. The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol. 2014;50:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sutoh Yoneyama M, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, et al. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol. 2014;93:157–69.

    Article  CAS  PubMed  Google Scholar 

  48. Wang C, Wang C, Wu Y, Feng H, Liu P, Chang Y, et al. Quantitative proteomics reveals a novel role of karyopherin alpha 2 in cell migration through the regulation of vimentin-pErk protein complex levels in lung cancer. J Proteome Res. 2015;14:1739–51.

    Article  CAS  PubMed  Google Scholar 

  49. Chaudhari P, Charles S, D’Souza Z, Vaidya M. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells. Exp Cell Res. 2017;360:125–37.

    Article  CAS  PubMed  Google Scholar 

  50. Cheng C, Chao W, Liao C, Tseng Y, Lai Y, Lai Y, et al. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment. Cell Adhes Migr. 2018;12:19–27.

    Article  CAS  Google Scholar 

  51. Andrä K, Lassmann H, Bittner R, Shorny S, Fässler R, Propst F, et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Gene Dev. 1997;11:3143–56.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bershadsky A, Chausovsky A, Becker E, Lyubimova A, Geiger B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr Biol. 1996;6:1279–89.

    Article  CAS  PubMed  Google Scholar 

  53. Andra K, Nikolic B, Stocher M, Drenckhahn D, Wiche G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 1998;12:3442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sweeney HL, Holzbaur ELF. Motor proteins. Cold Spring Harb Perspect Biol. 2018. https://doi.org/10.1101/cshperspect.a021931.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Huxley A. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318.

    Article  CAS  PubMed  Google Scholar 

  56. Hug C, Jay PY, Reddy I, McNally JG, Bridgman PC, Elson EL, et al. Capping protein levels influence actin assembly and cell motility in dictyostelium. Cell. 1995;81:591–600.

    Article  CAS  PubMed  Google Scholar 

  57. Hemler M. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu Rev Immunol. 1990;8:365–400.

    Article  CAS  PubMed  Google Scholar 

  58. Buck C, Horwitz A. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol. 1987;3:179–205.

    Article  CAS  PubMed  Google Scholar 

  59. Hynes R. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.

    Article  CAS  PubMed  Google Scholar 

  60. Juliano R, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993;120:577–85.

    Article  CAS  PubMed  Google Scholar 

  61. Dowling J, Yu Q, Fuchs E. Beta4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol. 1996;134:559–72.

    Article  CAS  PubMed  Google Scholar 

  62. van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A. Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet. 1996;13:366–9.

    Article  PubMed  Google Scholar 

  63. Duronio R, Gordon J, Boguski M. Comparative analysis of the beta transducin family with identification of several new members including PWP1, a nonessential gene of Saccharomyces cerevisiae that is divergently transcribed from NMT1. Proteins. 1992;13:41–56.

    Article  CAS  PubMed  Google Scholar 

  64. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 1994;91:839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guillemot F, Billault A, Auffray C. Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex. P Natl Acad Sci USA. 1989;86:4594–8.

    Article  CAS  Google Scholar 

  66. Chou Y, Chou C, Chen Y, Tsai S, Hsieh F, Liu H, et al. Structure and genomic organization of porcine RACK1 gene. Biochem Biophys Acta. 1999;1489:315–22.

    CAS  PubMed  Google Scholar 

  67. Zhang Q, Ragnauth C, Greener M, Shanahan C, Roberts R. The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics. 2002;80:473–81.

    Article  CAS  PubMed  Google Scholar 

  68. Simpson JG, Roberts RG. Patterns of evolutionary conservation in the nesprin genes highlight probable functionally important protein domains and isoforms. Biochem Soc Trans. 2008;36:1359–67.

    Article  CAS  PubMed  Google Scholar 

  69. Wilhelmsen K, Litjens SHM, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol. 2005;171:799–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Postel R, Ketema M, Kuikman I, de Pereda JM, Sonnenberg A. Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. J Cell Sci. 2011;124:755–64.

    Article  CAS  PubMed  Google Scholar 

  71. Ketema M, Wilhelmsen K, Kuikman I, Janssen H, Hodzic D, Sonnenberg A. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J Cell Sci. 2007;120:3384–94.

    Article  CAS  PubMed  Google Scholar 

  72. Lombardi M, Jaalouk D, Shanahan C, Burke B, Roux K, Lammerding J. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem. 2011;286:26743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Geerts D, Fontao L, Nievers MG, Schaapveld RQ, Purkis PE, Wheeler GN, et al. Binding of integrin alpha6beta4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. J Cell Biol. 1999;147:417–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Koster J, Geerts D, Favre B, Borradori L, Sonnenberg A. Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J Cell Sci. 2003;116:387–99.

    Article  CAS  PubMed  Google Scholar 

  75. Pellegrini L, Venkitaraman A. Emerging functions of BRCA2 in DNA recombination. Trends Biochem Sci. 2004;29:310–6.

    Article  CAS  PubMed  Google Scholar 

  76. Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005;434:598–604.

    Article  CAS  PubMed  Google Scholar 

  77. Gonczy P. Centrosomes: hooked on the nucleus. Curr Biol. 2004;14:R268-70.

    Article  CAS  PubMed  Google Scholar 

  78. Kim Y, Lee J, Kim H, Lee M, Son M, Yoo C, et al. The unique spliceosome signature of human pluripotent stem cells is mediated by SNRPA1, SNRPD1, and PNN. Stem Cell Res. 2017;22:43–53.

    Article  CAS  PubMed  Google Scholar 

  79. Angeloni D, Danilkovitch-Miagkova A, Ivanov S, Breathnach R, Johnson B, Leonard E, et al. Gene structure of the human receptor tyrosine kinase RON and mutation analysis in lung cancer samples. Genes Chromosom Cancer. 2000;29:147–56.

    Article  CAS  PubMed  Google Scholar 

  80. Yao H, Zhou Y, Zhang R, Wang M. MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat Rev Cancer. 2013;13:466–81.

    Article  CAS  PubMed  Google Scholar 

  81. Boczonadi V, Määttä A. Annexin A9 is a periplakin interacting partner in membrane-targeted cytoskeletal linker protein complexes. FEBS Lett. 2012;586:3090–6.

    Article  CAS  PubMed  Google Scholar 

  82. Boczonadi V, McInroy L, Määttä A. Cytolinker cross-talk: periplakin N-terminus interacts with plectin to regulate keratin organisation and epithelial migration. Exp Cell Res. 2007;313:3579–91.

    Article  CAS  PubMed  Google Scholar 

  83. Long H, Boczonadi V, McInroy L, Goldberg M, Määttä A. Periplakin-dependent re-organisation of keratin cytoskeleton and loss of collective migration in keratin-8-downregulated epithelial sheets. J Cell Sci. 2006;119:5147–59.

    Article  CAS  PubMed  Google Scholar 

  84. Braun A, Olayioye M. Rho regulation: DLC proteins in space and time. Cell Signal. 2015;27:1643–51.

    Article  CAS  PubMed  Google Scholar 

  85. Gregor M, Osmanagic-Myers S, Burgstaller G, Wolfram M, Fischer I, Walko G, et al. Mechanosensing through focal adhesion-anchored intermediate filaments. FASEB J. 2014;28:715–29.

    Article  CAS  PubMed  Google Scholar 

  86. Holeiter G, Heering J, Erlmann P, Schmid S, Jähne R, Olayioye M. Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. Cancer Res. 2008;68:8743–51.

    Article  CAS  PubMed  Google Scholar 

  87. Sabbir M, Wigle N, Loewen S, Gu Y, Buse C, Hicks G, et al. Identification and characterization of Dlc1 isoforms in the mouse and study of the biological function of a single gene trapped isoform. BMC Biol. 2010;8:17.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Goldfarb D, Corbett A, Mason D, Harreman M, Adam S. Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol. 2004;14:505–4.

    Article  CAS  PubMed  Google Scholar 

  89. Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer. Cancer Lett. 2013;331:18–23.

    Article  CAS  PubMed  Google Scholar 

  90. Gousias K, Becker A, Simon M, Niehusmann P. Nuclear karyopherin a2: a novel biomarker for infiltrative astrocytomas. J Neurooncol. 2012;109:545–53.

    Article  CAS  PubMed  Google Scholar 

  91. Craig A, Zirngibl R, Greer P. Disruption of coiled-coil domains in Fer protein-tyrosine kinase abolishes trimerization but not kinase activation. J Biol Chem. 1999;274:19934–42.

    Article  CAS  PubMed  Google Scholar 

  92. Orlovsky K, Ben-Dor I, Priel-Halachmi S, Malovany H, Nir U. N-terminal sequences direct the autophosphorylation states of the FER tyrosine kinases in vivo. Biochemistry. 2000;39:11084–91.

    Article  CAS  PubMed  Google Scholar 

  93. Lunter PC, Wiche G. Direct binding of plectin to Fer kinase and negative regulation of its catalytic activity. Biochem Bioph Res Co. 2002;296:904–10.

    Article  CAS  Google Scholar 

  94. Rezniczek G, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol. 2007;176:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Capetanaki Y. Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends Cardiovasc Med. 2002;12:339–48.

    Article  CAS  PubMed  Google Scholar 

  96. Paulin D, Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res. 2004;301:1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the Science and Technology Project of Xuzhou (KC20119), and the National Natural Science Foundation of China (81972377).

Author information

Authors and Affiliations

Authors

Contributions

JD: the conception and design of this manuscript; KG and ZG: writing and editing; MX: collecting and preparing related papers; HL: supervision and revision.

Corresponding authors

Correspondence to Hailong Li or Jiehui Di.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Gao, Z., Xia, M. et al. Role of plectin and its interacting molecules in cancer. Med Oncol 40, 280 (2023). https://doi.org/10.1007/s12032-023-02132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02132-4

Keywords

Navigation