Skip to main content
Log in

6-Methoxydihydrosanguinarine exhibits cytotoxicity and sensitizes TRAIL-induced apoptosis of hepatocellular carcinoma cells through ROS-mediated upregulation of DR5

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

6-methoxydihydrosanguinarine (6-MS), a natural benzophenanthridine alkaloid extracted from Macleaya cordata (Willd.) R. Br, has shown to trigger apoptotic cell death in cancer cells. However, the exact mechanisms involved have not yet been clarified. The current study reveals the underlying mechanisms of 6-MS-induced cytotoxicity in hepatocellular carcinoma (HCC) cells and investigates whether 6-MS sensitizes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis. 6-MS was shown to suppress cell proliferation and trigger cell cycle arrest, DNA damage, and apoptosis in HCC cells. Mechanisms analysis indicated that 6-MS promoted reactive oxygen species (ROS) generation, JNK activation, and inhibits EGFR/Akt signaling pathway. DNA damage and apoptosis induced by 6-MS were reversed following N-acetyl-l-cysteine (NAC) treatment. The enhancement of PARP cleavage caused by 6-MS was abrogated by pretreatment with JNK inhibitor SP600125. Furthermore, 6-MS enhanced TRAIL-mediated HCC cells apoptosis by upregulating the cell surface receptor DR5 expression. Pretreatment with NAC attenuated 6-MS-upregulated DR5 protein expression and alleviated cotreatment-induced viability reduction, cleavage of caspase-8, caspase-9, and PARP. Overall, our results suggest that 6-MS exerts cytotoxicity by modulating ROS generation, EGFR/Akt signaling, and JNK activation in HCC cells. 6-MS potentiates TRAIL-induced apoptosis through upregulation of DR5 via ROS generation. The combination of 6-MS with TRAIL may be a promising strategy and warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data can be available upon request from the corresponding author.

Reference

  1. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–90.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yarchoan M, Agarwal P, Villanueva A, Rao S, Dawson LA, Llovet JM, et al. Recent developments and therapeutic strategies against hepatocellular carcinoma. Cancer Res. 2019;79(17):4326–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyers BM, Knox JJ, Cosby R, Beecroft JR, Chan KK, Coburn N, et al. Non-surgical management of advanced hepatocellular carcinoma: a systematic review by cancer care ontario. Can Liver J. 2021;4(3):257–74.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O’Connell M, Kelley RF, et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell. 1999;4(4):563–71.

    Article  CAS  PubMed  Google Scholar 

  5. Snajdauf M, Havlova K, Vachtenheim J Jr, Ozaniak A, Lischke R, Bartunkova J, et al. The TRAIL in the treatment of human cancer: an update on clinical trials. Front Mol Biosci. 2021;8: 628332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kusaba M, Nakao K, Goto T, Nishimura D, Kawashimo H, Shibata H, et al. Abrogation of constitutive STAT3 activity sensitizes human hepatoma cells to TRAIL-mediated apoptosis. J Hepatol. 2007;47(4):546–55.

    Article  CAS  PubMed  Google Scholar 

  7. Kurita S, Higuchi H, Saito Y, Nakamoto N, Takaishi H, Tada S, et al. DNMT1 and DNMT3b silencing sensitizes human hepatoma cells to TRAIL-mediated apoptosis via up-regulation of TRAIL-R2/DR5 and caspase-8. Cancer Sci. 2010;101(6):1431–9.

    Article  CAS  PubMed  Google Scholar 

  8. Chaudhry GE, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol. 2022;13: 842376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, et al. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother. 2022;154: 113610.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis. 2022;27(9–10):647–67.

    Article  CAS  PubMed  Google Scholar 

  11. Ruan Q, Patel G, Wang J, Luo E, Zhou W, Sieniawska E, et al. Current advances of endophytes as a platform for production of anti-cancer drug camptothecin. Food Chem Toxicol. 2021;151: 112113.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang D, Kanakkanthara A. Beyond the paclitaxel and vinca alkaloids: next generation of plant-derived microtubule-targeting agents with potential anticancer activity. Cancers (Basel). 2020;12(7):1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ullah A, Ullah N, Nawaz T, Aziz T. Molecular mechanisms of sanguinarine in cancer prevention and treatment. Anticancer Agents Med Chem. 2023;23(7):765–78.

    Article  CAS  PubMed  Google Scholar 

  14. Liu F, Wang H, Zhu X, Jiang N, Pan F, Song C, et al. Sanguinarine promotes healthspan and innate immunity through a conserved mechanism of ROS-mediated PMK-1/SKN-1 activation. iScience. 2022;25(3):103874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee YJ, Yin HQ, Kim YH, Li GY, Lee BH. Apoptosis inducing effects of 6-methoxydihydrosanguinarine in HT29 colon carcinoma cells. Arch Pharm Res. 2004;27(12):1253–7.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Zhang X, Che D, Zeng L, Zhang Y, Nan K, et al. 6-Methoxydihydrosanguinarine induces apoptosis and autophagy in breast cancer MCF-7 cells by accumulating ROS to suppress the PI3K/AKT/mTOR signaling pathway. Phytother Res. 2023;37(1):124–39.

    Article  CAS  PubMed  Google Scholar 

  17. Yin HQ, Kim YH, Moon CK, Lee BH. Reactive oxygen species-mediated induction of apoptosis by a plant alkaloid 6-methoxydihydrosanguinarine in HepG2 cells. Biochem Pharmacol. 2005;70(2):242–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hühn D, Bolck HA, Sartori AA. Targeting DNA double-strand break signalling and repair: recent advances in cancer therapy. Swiss Med Wkly. 2013;143:w13837.

    PubMed  Google Scholar 

  19. Zhang P, Chen L, Zhou F, He Z, Wang G, Luo Y. NRP1 promotes prostate cancer progression via modulating EGFR-dependent AKT pathway activation. Cell Death Dis. 2023;14(2):159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li R, Zheng C, Shiu PH, Rangsinth P, Wang W, Kwan YW, et al. Garcinone E triggers apoptosis and cell cycle arrest in human colorectal cancer cells by mediating a reactive oxygen species-dependent JNK signaling pathway. Biomed Pharmacother. 2023;162: 114617.

    Article  CAS  PubMed  Google Scholar 

  21. Jekimovs C, Bolderson E, Suraweera A, Adams M, O’Byrne KJ, Richard DJ. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Front Oncol. 2014;4:86.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Prendergast ÁM, Cruet-Hennequart S, Shaw G, Barry FP, Carty MP. Activation of DNA damage response pathways in human mesenchymal stem cells exposed to cisplatin or γ-irradiation. Cell Cycle. 2011;10(21):3768–77.

    Article  CAS  PubMed  Google Scholar 

  23. Morii M, Fukumoto Y, Kubota S, Yamaguchi N, Nakayama Y, Yamaguchi N. Imatinib inhibits inactivation of the ATM/ATR signaling pathway and recovery from adriamycin/doxorubicin-induced DNA damage checkpoint arrest. Cell Biol Int. 2015;39(8):923–32.

    Article  CAS  PubMed  Google Scholar 

  24. Michalkova R, Kello M, Kudlickova Z, Gazdova M, Mirossay L, Mojzisova G, et al. Programmed cell death alterations mediated by synthetic indole chalcone resulted in cell cycle arrest, dna damage, apoptosis and signaling pathway modulations in breast cancer model. Pharmaceutics. 2022;14(3):503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jan R, Chaudhry GE. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019;9(2):205–18. https://doi.org/10.15171/apb.2019.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kucukler S, Darendelioğlu E, Caglayan C, Ayna A, Yıldırım S, Kandemir FM. Zingerone attenuates vancomycin-induced hepatotoxicity in rats through regulation of oxidative stress, inflammation and apoptosis. Life Sci. 2020;259: 118382.

    Article  CAS  PubMed  Google Scholar 

  27. Caglayan C, Kandemir FM, Ayna A, Gür C, Küçükler S, Darendelioğlu E. Neuroprotective effects of 18β-glycyrrhetinic acid against bisphenol a-induced neurotoxicity in rats: involvement of neuronal apoptosis, endoplasmic reticulum stress and JAK1/STAT1 signaling pathway. Metab Brain Dis. 2022;37(6):1931–40.

    Article  CAS  PubMed  Google Scholar 

  28. Kwon S, Ko H, You DG, Kataoka K, Park JH. Nanomedicines for reactive oxygen species mediated approach: an emerging paradigm for cancer treatment. Acc Chem Res. 2019;52(7):1771–82.

    Article  CAS  PubMed  Google Scholar 

  29. Emre Kızıl H, Gür C, Ayna A, Darendelioğlu E, Küçükler S, Sağ S. Contribution of oxidative stress, apoptosis, endoplasmic reticulum stress and autophagy pathways to the ameliorative effects of hesperidin in naf-induced testicular toxicity. Chem Biodivers. 2023;20(3): e202200982.

    Article  PubMed  Google Scholar 

  30. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu J, Wang D, Zhou J, Li J, Xie R, Li Y, et al. Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells. Phytother Res. 2023;37(1):310–28.

    Article  CAS  PubMed  Google Scholar 

  32. Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23(7):499–515.

    Article  CAS  PubMed  Google Scholar 

  33. Hu B, Zou T, Qin W, Shen X, Su Y, Li J, et al. Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3-ABCB1 signaling in hepatocellular carcinoma. Cancer Res. 2022;82(20):3845–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su ZJ, Liu XY, Zhang JH, Ke SY, Fei HJ. Neurotensin promotes cholangiocarcinoma metastasis via the EGFR/AKT pathway. Gene. 2019;687:143–50.

    Article  CAS  PubMed  Google Scholar 

  35. Yan X, Yang P, Liu H, Zhao Y, Wu Z, Zhang B. miR-4461 inhibits the progression of Gallbladder carcinoma via regulating EGFR/AKT signaling. Cell Cycle. 2022;21(11):1166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer. 2022;1877(3): 188736.

    Article  CAS  PubMed  Google Scholar 

  38. Sun B, Liu Y, He D, Li J, Wang J, Wen W, et al. Traditional Chinese medicines and their active ingredients sensitize cancer cells to TRAIL-induced apoptosis. J Zhejiang Univ Sci B. 2021;22(3):190–203.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang YY, Feng PP, Wang HF, Zhang H, Liang T, Hao XS, et al. Licochalcone B induces DNA damage, cell cycle arrest, apoptosis, and enhances TRAIL sensitivity in hepatocellular carcinoma cells. Chem Biol Interact. 2022;365: 110076.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou X, Lv L, Tan Y, Zhang Z, Wei S, Xiao S. Tanshinone IIA sensitizes TRAIL-induced apoptosis in glioblastoma through inducing the expression of death receptors (and suppressing STAT3 activation). Brain Res. 2021;1766: 147515.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the contributors of the public databases used in this study

Funding

This work was supported by the Shandong Provincial Natural Science Foundation, China (No ZR2022MH178); Project of Administration of Traditional Chinese Medicine of Shandong Province, China (No 2020M064); Science and Technology Innovation Project of Taian (No 2022NS353). Natural Science Foundation of Shandong Province, ZR2022MH178, Feng-ze Wang ,Science and Technology Innovation Project of Taian, 2022NS353, lu cao , Project of Administration of Traditional Chinese Medicine of Shandong Province, 2020M064, Gang-ping Hao

Author information

Authors and Affiliations

Authors

Contributions

LW and RL: Conceptualization, draft preparation, investigation. ZZ and YS: data curation and investigation. YZ and TZ: investigation. FW: validation. GH: Funding acquisition and writing—editing. LC: Funding acquisition, writing—reviewing and editing. All authors agree to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding authors

Correspondence to Gang-ping Hao or Lu Cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ll., Li, Rt., Zang, Zh. et al. 6-Methoxydihydrosanguinarine exhibits cytotoxicity and sensitizes TRAIL-induced apoptosis of hepatocellular carcinoma cells through ROS-mediated upregulation of DR5. Med Oncol 40, 266 (2023). https://doi.org/10.1007/s12032-023-02129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02129-z

Keywords

Navigation