Skip to main content
Log in

SDF-1/CXCR4 promotes F5M2 osteosarcoma cell migration by activating the Wnt/β-catenin signaling pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Osteosarcoma (OS), the most common primary malignant bone tumor in children and adolescents, lacks an effective therapy. Stromal cell-derived factor (SDF-1) and its receptor, CXCR4, play multiple roles in migration, proliferation, and survival of different tumor cells. This study aimed to investigate whether the functional SDF-1/CXCR4 signaling mediates chemotaxis in F5M2 OS cells as well as the underlying mechanisms. Immunohistochemistry and immunofluorescence microscopy were used. RNA expression was detected by real-time quantitative polymerase chain reaction, and protein expression was examined by Western blotting. Migration assays were carried out in F5M2 cells. The results showed that the expression of CXCR4 and β-catenin mRNA and protein was significantly higher in OS tissues compared to the surrounding non-neoplastic tissues. SDF-1 promoted F5M2 cell migration by activating the AKT and Wnt/β-catenin signaling pathway, which was abrogated by preincubation with AMD3100 and LY294002. In conclusion, SDF-1/CXCR4 axis-promoted F5M2 cell migration was regulated by the Wnt/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Link MP. Osteosarcoma in adolescents and young adults: new developments and controversies. Commentary on the use of presurgical chemotherapy. Cancer Treat Res. 1993;62:383–5.

    Article  CAS  PubMed  Google Scholar 

  2. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115:1531–43.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13.

    Article  PubMed  Google Scholar 

  4. Bacci G, Ferrari S, Bertoni F, Ruggieri P, Picci P, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol. 2000;18:4016–27.

    CAS  PubMed  Google Scholar 

  5. Arndt CA, Rose PS, Folpe AL, Laack NN. Common musculoskeletal tumors of childhood and adolescence. Mayo Clin Proc. 2012;87:475–87.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ferguson WS, Goorin AM. Current treatment of osteosarcoma. Cancer Invest. 2001;19:292–315.

    Article  CAS  PubMed  Google Scholar 

  7. Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16:2927–31.

    Article  CAS  PubMed  Google Scholar 

  8. Muller A, Homey B, Soto H, Ge N, Catron D, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    Article  CAS  PubMed  Google Scholar 

  9. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–42.

    Article  CAS  PubMed  Google Scholar 

  10. Douglass S, Meeson AP, Overbeck-Zubrzycka D, Brain JG, Bennett MR, et al. Breast cancer metastasis: demonstration that FOXP3 regulates CXCR4 expression and the response to CXCL12. J Pathol. 2014;234:74–85.

    Article  CAS  PubMed  Google Scholar 

  11. Kim SY, Lee CH, Midura BV, Yeung C, Mendoza A, et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis. 2008;25:201–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Portella L, Vitale R, De Luca S, D’Alterio C, Ierano C, et al. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases. PLoS ONE. 2013;8:e74548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Baumhoer D, Smida J, Zillmer S, Rosemann M, Atkinson MJ, et al. Strong expression of CXCL12 is associated with a favorable outcome in osteosarcoma. Mod Pathol. 2012;25:522–8.

    Article  CAS  PubMed  Google Scholar 

  14. Huang CY, Lee CY, Chen MY, Yang WH, Chen YH, et al. Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-kappaB-dependent pathways. J Cell Physiol. 2009;221:204–12.

    Article  CAS  PubMed  Google Scholar 

  15. McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH. The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther. 2011;11:1223–32.

    Article  CAS  PubMed  Google Scholar 

  16. Zi X, Guo Y, Simoneau AR, Hope C, Xie J, et al. Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res. 2005;65:9762–70.

    Article  CAS  PubMed  Google Scholar 

  17. Mohinta S, Wu H, Chaurasia P, Watabe K. Wnt pathway and breast cancer. Front Biosci. 2007;12:4020–33.

    Article  CAS  PubMed  Google Scholar 

  18. Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;10:5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ma Y, Ren Y, Han EQ, Li H, Chen D, et al. Inhibition of the Wnt-beta-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy. Biochem Biophys Res Commun. 2013;431:274–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hu TH, Yao Y, Yu S, Han LL, Wang WJ, et al. SDF-1/CXCR4 promotes epithelial–mesenchymal transition and progression of colorectal cancer by activation of the Wnt/beta-catenin signaling pathway. Cancer Lett. 2014;354:417–26.

    Article  CAS  PubMed  Google Scholar 

  21. Holland JD, Gyorffy B, Vogel R, Eckert K, Valenti G, et al. Combined Wnt/beta-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep. 2013;5:1214–27.

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Yang TT, Wang W, Sun HH, Ma BA, et al. Establishment and characterization of human osteosarcoma cell lines with different pulmonary metastatic potentials. Cytotechnology. 2009;61:37–44.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Osaki M, Takeshita F, Sugimoto Y, Kosaka N, Yamamoto Y, et al. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther. 2011;19:1123–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kong W, He L, Coppola M, Guo J, Esposito NN, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 2010;285:17869–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Han K, Zhao T, Chen X, Bian N, Yang T, et al. microRNA-194 suppresses osteosarcoma cell proliferation and metastasis in vitro and in vivo by targeting CDH2 and IGF1R. Int J Oncol. 2014;45:1437–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Carloni V, Pinzani M, Giusti S, Romanelli RG, Parola M, et al. Tyrosine phosphorylation of focal adhesion kinase by PDGF is dependent on ras in human hepatic stellate cells. Hepatology. 2000;31:131–40.

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Ma Q, Xu Q, Liu H, Lei J, et al. SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial–mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway. Cancer Lett. 2012;322:169–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Guo M, Cai C, Zhao G, Qiu X, Zhao H, et al. Hypoxia promotes migration and induces CXCR4 expression via HIF-1alpha activation in human osteosarcoma. PLoS ONE. 2014;9:e90518.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cai Y, Mohseny AB, Karperien M, Hogendoorn PC, Zhou G, Cleton-Jansen AM. Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma. J Pathol. 2010;220:24–33.

    Article  CAS  PubMed  Google Scholar 

  30. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  31. Shen X, Artinyan A, Jackson D, Thomas RM, Lowy AM, Kim J. Chemokine receptor CXCR4 enhances proliferation in pancreatic cancer cells through AKT and ERK dependent pathways. Pancreas. 2010;39:81–7.

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Li CL, Wang L, Yu WB, Yin HP, et al. Influence of CXCR4/SDF-1 axis on E-cadherin/beta-catenin complex expression in HT29 colon cancer cells. World J Gastroenterol. 2011;17:625–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gentilini A, Rombouts K, Galastri S, Caligiuri A, Mingarelli E, et al. Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma. J Hepatol. 2012;57:813–20.

    Article  PubMed  Google Scholar 

  34. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113:4341–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 81272441, 81201633, 81372297).

Conflict of interest

The authors declare that there is no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-ping Zhang or Yong Zhou.

Additional information

Yao Lu, Bin Hu, and Guo-Feng Guan have contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Hu, B., Guan, GF. et al. SDF-1/CXCR4 promotes F5M2 osteosarcoma cell migration by activating the Wnt/β-catenin signaling pathway. Med Oncol 32, 194 (2015). https://doi.org/10.1007/s12032-015-0576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0576-0

Keywords

Navigation