Skip to main content

Advertisement

Log in

Study on the mesothelin-specific cytotoxicity against epithelial ovarian cancer with full-length mesothelin cDNA-transduced dendritic cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 29 May 2015

Abstract

Epithelial ovarian cancer (EOC) has the highest mortality rate among the various types of gynecological cancers. As the current therapeutic approaches are not enough, the development of more effective treatments to improve the survival of patients with EOC is urgently needed. Mesothelin (MSLN) is a cell surface glycoprotein, which is overexpressed in ovarian cancer tissues. As an immunotherapeutic approach, in this study, we investigated whether the genetically modified dendritic cells (DCs) expressing MSLN could induce cytotoxic T lymphocytes (CTLs) to produce MSLN-specific cytotoxic activity against EOCs. Here, we report that DCs transfected with full-length coding sequence of MSLN could induce MSLN-specific CTLs responses against ovarian cancer lines SKOV3 and OVCAR3 in vitro. Additionally, we identified that the death rates of ovarian cancer cells, killed by MSLN-specific CTLs, were significantly higher than the normal CTLs. Furthermore, IFN-γ production by stimulated MSLN-specific CTLs was significantly higher than that of unstimulated CTLs. This study showed that induced CTLs by DCs with full-length MSLN cDNA have effective immune response against the ovarian cancer cells, indicating that MSLN-transfected DCs vaccine has a promising prospect for the treatment of EOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holschneider C, Berek J. Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol. 2000;19:3–10.

    Article  CAS  PubMed  Google Scholar 

  2. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics. CA Cancer J Clin. 1999;49:8–31.

    Article  CAS  PubMed  Google Scholar 

  3. Permuth-Wey J, Sellers T. Epidemiology of ovarian cancer. Methods Mol Biol. 2009;472:413–37.

    PubMed  Google Scholar 

  4. Bookman M. Biological therapy of ovarian cancer: current directions. Semin Oncol. 1998;25:381–96.

    CAS  PubMed  Google Scholar 

  5. Kajiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A, Kikkawa F. Chemoresistance to paclitaxel induces epithelial–mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol. 2007;31:277–83.

    CAS  PubMed  Google Scholar 

  6. Hoskins WJ, Perez CA, Young RC. Principles and practice of gynecologic oncology. Philadelphia: Limmincott-Raven Publishers; 1997.

    Google Scholar 

  7. Coosemans A, Vergote I, Van Gool SW. Dendritic cell-based immunotherapy in ovarian cancer. Oncoimmunology. 2013;2:e27059.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spinosa JP, Kanduc D. Ovarian cancer: designing effective vaccines and specific diagnostic tools. Immunotherapy. 2014;6:35–41.

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki S, Shibata K, Kikkawa F, Nakatsura T. Significant clinical response of progressive recurrent ovarian clear cell carcinoma to glypican-3-derived peptide vaccine therapy: two case reports. Hum Vaccin Immunother. 2014;10:338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riedmann EM. Ovarian cancer vaccine candidate DPX-Survivac: positive interim results from phase 1. Hum Vaccin Immunother. 2012;8:1743.

    Article  Google Scholar 

  11. Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res. 2013;19:4801–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liao JB, Disis ML. Therapeutic vaccines for ovarian cancer. Gynecol Oncol. 2013;130:667–73.

    Article  CAS  PubMed  Google Scholar 

  13. Gilboa E. DC-based cancer vaccines. J Clin Invest. 2007;117:1195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palena C, Abrams SI, Schlom J, Hodge JW. Cancer vaccines: preclinical studies and novel strategies. Adv Cancer Res. 2006;95:115–45.

    CAS  PubMed  Google Scholar 

  15. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood. 2000;96:3102–8.

    CAS  PubMed  Google Scholar 

  16. Schlienger K, Chu CS, Woo EY, Rivers PM, Toll AJ, Hudson B, et al. TRANCE- and CD40 ligand-matured dendritic cells reveal MHC class I-restricted T cells specific for autologous tumor in late-stage ovarian cancer patients. Clin Cancer Res. 2003;9:1517–27.

    CAS  PubMed  Google Scholar 

  17. Chiang CL, Maier DA, Kandalaft LE, Brennan AL, Lanitis E, Ye Q, et al. Optimizing parameters for clinical-scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor cell lysate. J Transl Med. 2011;9:198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci USA. 1996;93:136–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hassan R, Kreitman RJ, Pastan L, Willingham MC. Localization of mesothelin in epithelial ovarian cancer. Appl lmmunohistochem Mol Morphol. 2005;13:243–7.

    Article  CAS  Google Scholar 

  20. Ho M, Bera TK, Willingham MC, Onda M, Hassan R, FitzGerald D, Pastan I. Mesothelin expression in human lung cancer. Clin Cancer Res. 2007;13:5076–81.

    Article  Google Scholar 

  21. Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, Murugesan SR, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res. 2001;7:3862–8.

    CAS  PubMed  Google Scholar 

  22. Ryu B, Jones J, Blades NJ, Parmigiani G, Hollingsworth MA, Hruban RH, Kern SE. Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res. 2002;62:819–26.

    CAS  PubMed  Google Scholar 

  23. Hassan R, Bullock S, Premkumar A, Kreitman RJ, Kindler H, Willingham MC, Pastan I. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res. 2007;13:5144–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hassan R, Schweizer C, Lu KF, Schuler B, Remaley AT, Weil SC, Pastan I. Inhibition of mesothelin-CA-125 interaction in patients with mesothelioma by the anti-mesothelin monoclonal antibody MORAb-009: implications for cancer therapy. Lung Cancer. 2010;68:455–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yokokawa J, Palena C, Arlen P, Hassan R, Ho M, Pastan I, Schlom J, Tsang KY. Identification of novel human CTL epitopes and their agonist epitopes of mesothelin. Clin Cancer Res. 2005;11:6342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang CL, Wu TC, Hung CF. Control of human mesothelin expressing tumors by DNA vaccines. Gene Ther. 2007;14:1189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hung CF, Calizo R, Tsai YC, He L, Wu TC. A DNA vaccine encoding a singlechain trimer of HLA-A2 linked to human mesothelin peptide generates anti-tumor effects against human mesothelin-expressing tumors. Vaccine. 2007;25:127–35.

    Article  CAS  PubMed  Google Scholar 

  28. Feng Y, Xiao X, Zhu Z, Streaker E, Ho M, Pastan I, Dimitrov DS. A novel human monoclonal antibody that binds with high affinity to mesothelin-expressing cells and kills them by antibody-dependent cell-mediated cytotoxicity. Mol Cancer Ther. 2009;8:1113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishimura N, Nishioka Y, Shinohara T, Sone S. Enhanced efficiency by centrifugal manipulation of adenovirus-mediated interleukin 12 gene transduction into human monocyte-derived dendritic cells. Hum Gene Ther. 2001;12:333–46.

    Article  CAS  PubMed  Google Scholar 

  30. Huang CY, Cheng WF, Lee CN, Su YN, Chien SC, Tzeng YL, Hsieh CY, Chen CA. Serum mesothelin in epithelial ovarian carcinoma: a new screening marker and prognostic factor. Anticancer Res. 2006;26:4721–8.

    CAS  PubMed  Google Scholar 

  31. Ordóñez NG. Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol. 2003;27:1418–28.

    Article  PubMed  Google Scholar 

  32. Rump A, Morikawa Y, Tanaka M, Minami S, Umesaki N, Takeuchi M, Miyajima A. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004;279:9190–8.

    Article  CAS  PubMed  Google Scholar 

  33. Gubbels JA, Belisle J, Onda M, Rancourt C, Migneault M, Ho M, et al. Mesothelin–MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer. 2006;5:50.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  CAS  PubMed  Google Scholar 

  35. Pardoll D. Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol. 2002;2:227–38.

    Article  CAS  PubMed  Google Scholar 

  36. Charbonneau B, Goode EL, Kalli KR, Knutson KL, Derycke MS. The immune system in the pathogenesis of ovarian cancer. Crit Rev Immunol. 2013;33:137–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koidoa S, Nikruib N, Ohanac M, Xiac J, Tanaka Y, Liuc C, et al. Assessment of fusion cells from patient-derived ovarian carcinoma cells and dendritic cells as a vaccine for clinical use. Gynecol Oncol. 2005;99:462–71.

    Article  Google Scholar 

  38. Miyazawa M, Iwahashi M, Ojima T, Katsuda M, Nakamura M, Nakamori M, et al. Dendritic cells adenovirally-transduced with full-length mesothelin cDNA elicit mesothelin-specific cytotoxicity against pancreatic cancer cell lines in vitro. Cancer Lett. 2011;305:32–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Ethical Statement

This study had received approval from the Ethics Committee of the Cangzhou Central Hospital. Written informed consents were obtained from all blood donors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-hua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Dh., Wu, Xh., Qian, Sm. et al. Study on the mesothelin-specific cytotoxicity against epithelial ovarian cancer with full-length mesothelin cDNA-transduced dendritic cells. Med Oncol 32, 116 (2015). https://doi.org/10.1007/s12032-015-0561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0561-7

Keywords

Navigation