Skip to main content

Advertisement

Log in

Umbilical Cord Mesenchymal Stem Cells Conditioned Medium Promotes Aβ25-35 phagocytosis by Modulating Autophagy and Aβ-Degrading Enzymes in BV2 Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer’s disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25–35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25–35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25–35. ucMSCs-CM also promoted the phagocytosis of Aβ25–35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25–35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25–35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alzheimer's Disease International (2016) World Alzheimer Report. Alzheimer's Disease International, London

    Google Scholar 

  • Baik SH, Kang S, Son SM, Mook-Jung I (2016) Microglia contributes to plaque growth by cell death due to uptake of amyloid beta in the brain of Alzheimer's disease mouse model. Glia 64(12):2274–2290

    Article  PubMed  Google Scholar 

  • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 28(27):6926–6937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cantinieaux D, Quertainmont R, Blacher S, Rossi L, Wanet T, Noel A, Brook G, Schoenen J, Franzen R (2013) Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One 8(8):e69515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho MH, Cho K, Kang HJ, Jeon EY, Kim HS, Kwon HJ, Kim HM, Kim DH, Yoon SY (2014) Autophagy in microglia degrades extracellular beta-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 10(10):1761–1775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciregia F, Urbani A, Palmisano G (2017) Extracellular vesicles in brain tumors and neurodegenerative diseases. Front Mol Neurosci 10:276

    Article  PubMed Central  PubMed  Google Scholar 

  • Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA (2018) Dysfunction of autophagy and endosomal–lysosomal pathways: roles in pathogenesis of down syndrome and Alzheimer's disease. Free Radic Biol Med 114:40–51

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D, Lv P, Xing Q, Qu R, Yao N, Yang B, Guan F (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer's disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301

    Article  CAS  PubMed  Google Scholar 

  • Dagher NN, Najafi AR, Kayala KMN, Elmore MRP, White TE, Medeiros R, West BL, Green KN (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Strooper B, Karran E (2016) The cellular phase of Alzheimer's disease. Cell 164(4):603–615

    Article  CAS  PubMed  Google Scholar 

  • Dowling P, Clynes M (2011) Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics 11(4):794–804

    Article  CAS  PubMed  Google Scholar 

  • Ehrhart J, Darlington D, Kuzmin-Nichols N, Sanberg CD, Sawmiller DR, Sanberg PR, Tan J (2016) Biodistribution of infused human umbilical cord blood cells in Alzheimer's disease-like murine model. Cell Transplant 25(1):195–199

    Article  PubMed  Google Scholar 

  • Fan Z, Brooks DJ, Okello A, Edison P (2017) An early and late peak in microglial activation in Alzheimer's disease trajectory. Brain 140(3):792–803

    PubMed Central  PubMed  Google Scholar 

  • Frenkel D, Wilkinson K, Zhao L, Hickman SE, Means TK, Puckett L, Farfara D, Kingery ND, Weiner HL, El Khoury J (2013) Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nat Commun 4:2030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frere S, Slutsky I (2018) Alzheimer's disease: from firing instability to homeostasis network collapse. Neuron 97(1):32–58

    Article  CAS  PubMed  Google Scholar 

  • Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    Article  CAS  PubMed  Google Scholar 

  • Godoy MA, Saraiva LM, Carvalho LRP, Vasconcelos-Dos-Santos A, Beiral HJV, Ramos AB, Silva LRP, Leal RB, Monteiro VHS, Braga CV, Araujo-Silva CA, Sinis LC, Santos VB, Brunswick THK, Alcantara CL, Lima A, Cunha ESNLD, Galina A, Vieyra A, De Felice FG, Mendez-Otero R, Ferreira ST (2017) Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-beta oligomers. J Biol Chem 293(6):1957–1975

    Article  PubMed  Google Scholar 

  • Guglielmotto M, Monteleone D, Piras A, Valsecchi V, Tropiano M, Ariano S, Fornaro M, Vercelli A, Puyal J, Arancio O, Tabaton M, Tamagno E (2014) Aβ1–42 monomers or oligomers have different effects on autophagy and apoptosis. Autophagy 10(10):1827–1843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamisha KN, Tfilin M, Yanai J, Turgeman G (2015) Mesenchymal stem cells can prevent alterations in behavior and neurogenesis induced by Ass25-35 administration. J Molec Neurosci 55(4):1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Hickman SE, Allison EK, Khoury JE (2008) Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28(33):8354–8360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang F-L, Shiao Y-J, Hou S-J, Yang C-N, Chen Y-J, Lin C-H, Shie F-S, Tsay H-J (2013) Cysteine-rich domain of scavenger receptor AI modulates the efficacy of surface targeting and mediates oligomeric Aβ internalization. J Biomed Sci 20(1):54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunsberger JG, Rao M, Kurtzberg J, Bulte JWM, Atala A, LaFerla FM, Greely HT, Sawa A, Gandy S, Schneider LS, Doraiswamy PM (2016) Accelerating stem cell trials for Alzheimer's disease. Lancet Neurol 15(2):219–230

    Article  PubMed  Google Scholar 

  • Jang SK, Yu JM, Kim ST, Kim GH, Park DW, Lee DI, Joo SS (2015) An Aβ42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and Aβ-degrading enzymes in microglia. Eur J Pharmacol 758:1–10

    Article  CAS  PubMed  Google Scholar 

  • Janssen L, Dubbelaar ML, Holtman IR, de Boer-Bergsma J, Eggen BJ, Boddeke HW, De Deyn PP, Van Dam D (2017) Aging, microglia and cytoskeletal regulation are key factors in the pathological evolution of the APP23 mouse model for Alzheimer's disease. Biochim Biophys Acta 1863(2):395–405

    Article  CAS  Google Scholar 

  • Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P (2015) Impact of insulin degrading enzyme and neprilysin in Alzheimer's disease biology: characterization of putative cognates for therapeutic applications. J Alzheimers Dis 48(4):891–917

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75:13–18

    Article  CAS  PubMed  Google Scholar 

  • Khabbal J, Kerkela E, Mitkari B, Raki M, Nystedt J, Mikkonen V, Bergstrom K, Laitinen S, Korhonen M, Jolkkonen J (2015) Differential clearance of rat and human bone marrow-derived mesenchymal stem cells from the brain after intra-arterial infusion in rats. Cell Transplant 24(5):819–828

    Article  PubMed  Google Scholar 

  • Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim JY, Kyung JW, Kim SH, Oh JS, Shim SM, Na DL, Oh W, Chang JW (2015) GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model. Stem Cells Dev 24(20):2378–2390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JY, Kim DH, Kim JH, Lee D, Jeon HB, Kwon SJ, Kim SM, Yoo YJ, Lee EH, Choi SJ, Seo SW, Lee JI, Na DL, Yang YS, Oh W, Chang JW (2012) Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques. Cell Death Differ 19(4):680–691

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Kumar A, Keegan RM, Deshmukh R (2017) Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease. Biomed Pharmacother 98: 297–307

    Article  CAS  PubMed  Google Scholar 

  • Lane CA, Hardy J, Schott JM (2018) Alzheimer's disease. Eur J Neurol 25(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Larsen KB, Lamark T, Overvatn A, Harneshaug I, Johansen T, Bjorkoy G (2010) A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 6(6):784–793

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Lee JK, Lee H, Shin JW, Carter JE, Sakamoto T, Jin HK, Bae JS (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease. Neurosci Lett 481(1):30–35

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Oh I-H, Lim HK (2016) Stem cell therapy: a prospective treatment for Alzheimer's disease. Psychiatry Investig 13(6):583–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Q, Liu Y, Sun M (2017) Autophagy and Alzheimer's disease. Cell Mol Neurobiol 37(3):377–388

    Article  CAS  PubMed  Google Scholar 

  • Li T, Xia M, Gao Y, Chen Y, Xu Y (2015) Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 15(9):1293–1306

    Article  CAS  PubMed  Google Scholar 

  • Mallard C, Tremblay ME, Vexler ZS (2018) Microglia and neonatal brain injury. Neuroscience Jan 17 [Epub ahead of print]

  • Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 330(6012):1774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Fullgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC (2017) Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93(5):1015–1034

    Article  CAS  PubMed  Google Scholar 

  • Miners JS, Barua N, Kehoe PG, Gill S, Love S (2011) Abeta-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 70(11):944–959

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    Article  Google Scholar 

  • Orhon I, Reggiori F (2017) Assays to monitor autophagy progression in cell cultures. Cell 6(3):20

    Article  Google Scholar 

  • Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and microglia: novel partners in neurodegeneration and aging. Int J Mol Sci 18(3):598

  • Quek C, Hill AF (2017) The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 483(4):1178–1186

    Article  CAS  PubMed  Google Scholar 

  • Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8

    Article  CAS  Google Scholar 

  • Shin JY, Park HJ, Kim HN, Oh SH, Bae JS, Ha HJ, Lee PH (2014) Mesenchymal stem cells enhance autophagy and increase beta-amyloid clearance in Alzheimer disease models. Autophagy 10(1):32–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sole-Domenech S, Cruz DL, Capetillo-Zarate E, Maxfield FR (2016) The endocytic pathway in microglia during health, aging and Alzheimer's disease. Ageing Res Rev 32:89–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spangenberg EE, Green KN (2017) Inflammation in Alzheimer's disease: lessons learned from microglia-depletion models. Brain Behav Immun 61:1–11

    Article  CAS  PubMed  Google Scholar 

  • Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, West BL, Green KN (2016) Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139(Pt 4):1265–1281

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun W, Xu Z, Liu R, Yuan Z, Feng H (2013) Comparison of different fetal bovine serums in cultivation of human umbilical cord stroma-derived mesenchymal stem cells. J Xinxiang Med Univ 30(10):787–789,793

    CAS  Google Scholar 

  • Tejera D, Heneka MT (2016) Microglia in Alzheimer's disease: the good, the bad and the ugly. Curr Alzheimer Res 13(4):370–380

    Article  CAS  PubMed  Google Scholar 

  • Waisman A, Ginhoux F, Greter M, Bruttger J (2015) Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol 36(10):625–636

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Jia J, Wang Z (2018a) Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer's disease mice. J Alzheimers Dis 61(3):1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ma S, Yang B, Huang T, Meng N, Xu L, Xing Q, Zhang Y, Zhang K, Li Q, Zhang T, Wu J, Yang GL, Guan F, Wang J (2018b) Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer's disease. Behav Brain Res 339:297–304

    Article  CAS  PubMed  Google Scholar 

  • Wes PD, Sayed FA, Bard F, Gan L (2016) Targeting microglia for the treatment of Alzheimer's disease. Glia 64(10):1710–1732

    Article  PubMed  Google Scholar 

  • Whyte LS, Lau AA, Hemsley KM, Hopwood JJ, Sargeant TJ (2017) Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease? J Neurochem 140(5):703–717

    Article  CAS  PubMed  Google Scholar 

  • Wood H (2017) Alzheimer disease: soluble TREM2 in CSF sheds light on microglial activation in AD. Nat Rev Neurol 13(2):65

    Article  CAS  PubMed  Google Scholar 

  • Wray S, Fox NC (2016) Stem cell therapy for Alzheimer's disease: hope or hype? Lancet Neurol 15(2):133–135

    Article  PubMed  Google Scholar 

  • Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M, Peterhoff CM, Yang AJ, Wilson DA, St George-Hyslop P, Westaway D, Mathews PM, Levy E, Cuervo AM, Nixon RA (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain 134(Pt 1):258–277

    Article  PubMed  Google Scholar 

  • Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18(9):1865

    Article  PubMed Central  Google Scholar 

  • Yu Y, Ye RD (2015) Microglial Abeta receptors in Alzheimer's disease. Cell Mol Neurobiol 35(1):71–83

    Article  CAS  PubMed  Google Scholar 

  • Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M (2017) Clearance of cerebral Abeta in Alzheimer's disease: reassessing the role of microglia and monocytes. Cell Molec Life Sci 74(12):2167–2201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage [www.editage.cn] for English language editing. This study was supported by the Doctoral Research Start-up Fund of Xinxiang Medical University, Scientific Research Fund of Xinxiang Medical University (2013QN122), Postdoctoral Research Fund of Henan Province (2013041), Project of Science and Technology Department of Henan Province (162102310493), Key Project of Science and Technology Research of Henan Provincial Education Department (14B180027), National Natural Science Foundation of China (131600791, 81771226), Xinxiang City Foundation (CXRC16003 and ZD17008), Xinxiang Medical University Foundation (20172DCG-03), and National Training Program of Innovation and Entrepreneurship for Undergraduates of China (201610472051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihao Xu or Juntang Lin.

Ethics declarations

Disclosure of Potential Conflicts of Interest

All authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Nan, W., Zhang, X. et al. Umbilical Cord Mesenchymal Stem Cells Conditioned Medium Promotes Aβ25-35 phagocytosis by Modulating Autophagy and Aβ-Degrading Enzymes in BV2 Cells. J Mol Neurosci 65, 222–233 (2018). https://doi.org/10.1007/s12031-018-1075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1075-5

Keywords

Navigation