Skip to main content

Advertisement

Log in

Structural and Morphometric Comparison of the Molar Teeth in Pre-eruptive Developmental Stage of PACAP-Deficient and Wild-Type Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide with widespread distribution. It plays pivotal role in neuronal development. PACAP-immunoreactive fibers have been found in the tooth pulp, and recently, it has been shown that PACAP may also play a role in the regeneration of the periodontium after luxation injuries. However, there is no data about the effect of endogenous PACAP on tooth development. Ectodermal organogenesis including tooth development is regulated by different members of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), hedgehog (HH), and Wnt families. There is also a growing evidence to support the hypothesis that PACAP interacts with sonic hedgehog (SHH) receptor (PTCH1) and its downstream target (Gli1) suggesting its role in tooth development. Therefore, our aim was to study molar tooth development in mice lacking endogenous PACAP. In this study morphometric, immunohistochemical and structural comparison of molar teeth in pre-eruptive developmental stage was performed on histological sections of 7-day-old wild-type and PACAP-deficient mice. Further structural analysis was carried out with Raman microscope. The morphometric comparison of the 7-day-old samples revealed that the dentin was significantly thinner in the molars of PACAP-deficient mice compared to wild-type animals. Raman spectra of the enamel in wild-type mice demonstrated higher diversity in secondary structure of enamel proteins. In the dentin of PACAP-deficient mice higher intracrystalline disordering in the hydroxyapatite molecular structure was found. We also obtained altered SHH, PTCH1 and Gli1 expression level in secretory ameloblasts of PACAP-deficient mice compared to wild-type littermates suggesting that PACAP might play an important role in molar tooth development and matrix mineralization involving influence on SHH signaling cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allais A, Burel D, Isaac ER et al (2007) Altered cerebellar development in mice lacking pituitary adenylate cyclase-activating polypeptide. Eur J Neurosci 25:2604–2618

    Article  PubMed  Google Scholar 

  • Arimura A, Somogyvari-Vigh A, Weill C et al (1994) PACAP functions as a neurotrophic factor. Ann N Y Acad Sci 739:228–243

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JD, Ganss B, Goldberg M et al (2006) Protein–protein interactions of the developing enamel matrix. Curr Top Dev Biol 74:57–115

    Article  CAS  PubMed  Google Scholar 

  • Bei M (2009) Molecular genetics of tooth development. Curr Opin Genet Dev 19:504–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blechman J, Levkowitz G (2013) Alternative splicing of the pituitary adenylate cyclase-activating polypeptide receptor PAC1: mechanisms of fine tuning of brain activity. Front Endocrinol (Lausanne) 4:55

    CAS  Google Scholar 

  • Butler WT, Ritchie H (1995) The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol 39:169–179

    CAS  PubMed  Google Scholar 

  • Christopher KJ, Wang B, Kong Y, Weatherbee SD (2012) Forward genetics uncovers transmembrane protein 107 as a novel factor required for ciliogenesis and Sonic hedgehog signaling. Dev Biol 368:382–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Amico AG, Scuderi S, Saccone S, Castorina A, Drago F, D’Agata V (2013) Antiproliferative effects of PACAP and VIP in serum-starved glioma cells. J Mol Neurosci 51:503–513

    Article  PubMed  Google Scholar 

  • Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127:4775–4785

    CAS  PubMed  Google Scholar 

  • de Mul FF, Hottenhuis MH, Bouter P, Greve J, Arends J, ten Bosch JJ (1986) Micro-Raman line broadening in synthetic carbonated hydroxyapatite. J Dent Res 65:437–440

    Article  PubMed  Google Scholar 

  • Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman frequencies of organic compounds. Wiley, New York

    Google Scholar 

  • Featherstone JD, Lussi A (2006) Understanding the chemistry of dental erosion. Monogr Oral Sci 20:66–76

    Article  CAS  PubMed  Google Scholar 

  • Felszeghy S, Modis L, Nemeth P, Nagy G, Zelles T, Agre P, Laurikkala J, Fejerskov O, Thesleff I, Nielsen S (2004) Expression of aquaporin isoforms during human and mouse tooth development. Arch Oral Biol 49:247–257

    Article  CAS  PubMed  Google Scholar 

  • Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299

    Article  CAS  PubMed  Google Scholar 

  • Frechilla D, Garcia-Osta A, Palacios S, Cenarruzabeitia E, Del Rio J (2001) BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport 12:919–923

    Article  CAS  PubMed  Google Scholar 

  • Gritli-Linde A, Bei M, Maas R, Zhang XM, Linde A, McMahon AP (2002) Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development 129:5323–5337

    Article  CAS  PubMed  Google Scholar 

  • Grumolato L, Louiset E, Alexandre D et al (2003) PACAP and NGF regulate common and distinct traits of the sympathoadrenal lineage: effects on electrical properties, gene markers and transcription factors in differentiating PC12 cells. Eur J Neurosci 17:71–82

    Article  PubMed  Google Scholar 

  • Guirland C, Buck KB, Gibney JA, DiCicco-Bloom E, Zheng JQ (2003) Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide. J Neurosci 23:2274–2283

    CAS  PubMed  Google Scholar 

  • Hansel DE, May V, Eipper BA, Ronnett GV (2001) Pituitary adenylyl cyclase-activating peptides and alpha-amidation in olfactory neurogenesis and neuronal survival in vitro. J Neurosci 21:4625–4636

    CAS  PubMed  Google Scholar 

  • Hashimoto H, Shintani N, Tanaka K et al (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98:13355–13360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto H, Hashimoto R, Shintani N et al (2009) Depression-like behavior in the forced swimming test in PACAP-deficient mice: amelioration by the atypical antipsychotic risperidone. J Neurochem 110:595–602

    Article  CAS  PubMed  Google Scholar 

  • Hirose M, Niewiadomski P, Tse G et al (2011) Pituitary adenylyl cyclase-activating peptide counteracts hedgehog-dependent motor neuron production in mouse embryonic stem cell cultures. J Neurosci Res 89:1363–1374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ichikawa H, Sugimoto T (2003) Pituitary adenylate cyclase-activating polypeptide-immunoreactive nerve fibers in rat and human tooth pulps. Brain Res 980:288–292

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto T, Yamada A, Arakaki M et al (2011) Expressions and functions of neurotrophic factors in tooth development. J Oral Biosci 53:13–21

    Article  CAS  Google Scholar 

  • Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29

    Article  CAS  PubMed  Google Scholar 

  • Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139:3487–3497

    Article  CAS  PubMed  Google Scholar 

  • Khonsari RH, Seppala M, Pradel A et al (2013) The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling. BMC Biol 11:27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lakshminarayanan R, Fan D, Du C, Moradian-Oldak J (2007) The role of secondary structure in the entropically driven amelogenin self-assembly. Biophys J 93:3664–3674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee FS, Rajagopal R, Kim AH, Chang PC, Chao MV (2002) Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase activating polypeptides. J Biol Chem 277:9096–9102

    Article  CAS  PubMed  Google Scholar 

  • Lelievre V, Ghiani CA, Seksenyan A, Gressens P, de Vellis J, Waschek JA (2006) Growth factor-dependent actions of PACAP on oligodendrocyte progenitor proliferation. Regul Pept 137:58–66

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhao S, Wang XP (2014) YAP overexpression affects tooth morphogenesis and enamel knot patterning. J Dent Res 93:469–474

    Article  CAS  PubMed  Google Scholar 

  • Luukko K, Kettunen P (2014) Coordination of tooth morphogenesis and neuronal development through tissue interactions: lessons from mouse models. Exp Cell Res 325:72–77

    Article  CAS  PubMed  Google Scholar 

  • Luukko K, Moshnyakov M, Sainio K, Saarma M, Sariola H, Thesleff I (1996) Expression of neurotrophin receptors during rat tooth development is developmentally regulated, independent of innervation, and suggests functions in the regulation of morphogenesis and innervation. Dev Dyn 206:87–99

    Article  CAS  PubMed  Google Scholar 

  • Luukko K, Arumae U, Karavanov A et al (1997) Neurotrophin mRNA expression in the developing tooth suggests multiple roles in innervation and organogenesis. Dev Dyn 210:117–129

    Article  CAS  PubMed  Google Scholar 

  • Maasz G, Pirger Z, Reglodi D et al (2014) Comparative protein composition of the brains of PACAP-deficient mice using mass spectrometry-based proteomic analysis. J Mol Neurosci PMID:24643519

  • Margolis HC, Beniash E, Fowler CE (2006) Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 85:775–793

    Article  CAS  PubMed  Google Scholar 

  • Matthaus C, Bird B, Miljkovic M, Chernenko T, Romeo M, Diem M (2008) Infrared and Raman microscopy in cell biology (Chapter 10). Methods Cell Biol 89:275–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsiadis TA, Luukko K (1995) Neurotrophins in odontogenesis. Int J Dev Biol 39:195–202

    CAS  PubMed  Google Scholar 

  • Moradian-Oldak J, Du C, Falini G (2006) On the formation of amelogenin microribbons. Eur J Oral Sci 114(Suppl 1):289–296, discussion 327–329, 382

    Article  CAS  PubMed  Google Scholar 

  • Nagatomo KJ, Tompkins KA, Fong H et al (2008) Transgenic overexpression of gremlin results in developmental defects in enamel and dentin in mice. Connect Tissue Res 49:391–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nanci A (2008a) Enamel: composition, formation, and structure in Ten Cate’s oral histology: development, structure, and function, 7th edn. Mosby, St. Louis, pp 268–289

    Google Scholar 

  • Nanci A (2008b) Dentin–pulp complex in Ten Cate’s oral histology: development, structure, and function, 7th edn. Mosby, St. Louis, pp 191–238

    Google Scholar 

  • Nicot A, Lelievre V, Tam J, Waschek JA, DiCicco-Bloom E (2002) Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. J Neurosci 22:9244–9254

    CAS  PubMed  Google Scholar 

  • Niewiadomski P, Zhujiang A, Youssef M, Waschek JA (2013) Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA. Cell Signal 25:2222–2230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nonaka S, Kitaura H, Kimura K, Ishida M, Takano-Yamamoto T (2013) Expression of pituitary adenylate cyclase-activating peptide (PACAP) and PAC1 in the periodontal ligament after tooth luxation. Cell Mol Neurobiol 33:885–892

    Article  CAS  PubMed  Google Scholar 

  • Nosrat CA, Fried K, Ebendal T, Olson L (1998) NGF, BDNF, NT3, NT4 and GDNF in tooth development. Eur J Oral Sci 106(Suppl 1):94–99

    CAS  PubMed  Google Scholar 

  • Nosrat I, Seiger A, Olson L, Nosrat CA (2002) Expression patterns of neurotrophic factor mRNAs in developing human teeth. Cell Tissue Res 310:177–187

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Schutz G, Niehrs C, Glinka A (2000) Dissecting GHRH- and pituitary adenylate cyclase activating polypeptide-mediated signalling in Xenopus. Mech Dev 94:111–116

    Article  CAS  PubMed  Google Scholar 

  • Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E (1997) Infrared and Raman microspectrometry study of fluor–fluor-hydroxy and hydroxy-apatite powders. J Mater Sci Mater Med 8:271–276

    Article  CAS  PubMed  Google Scholar 

  • Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481

    Article  CAS  PubMed  Google Scholar 

  • Puceat E, Reynard B, Lecuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97

    Article  CAS  Google Scholar 

  • Reglodi D, Kiss P, Tamas A, Lengvari I (2003) The effects of PACAP and PACAP antagonist on the neurobehavioral development of newborn rats. Behav Brain Res 140:131–139

    Article  CAS  PubMed  Google Scholar 

  • Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–972

    Article  CAS  PubMed  Google Scholar 

  • Reglodi D, Kiss P, Szabadfi K et al (2012) PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J Mol Neurosci 48:482–492

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Gehlert DR, Collier DA (2013) PACAP and PAC1 receptor in brain development and behavior. Neuropeptides 47:421–430

    Article  CAS  PubMed  Google Scholar 

  • Tajiri M, Hayata-Takano A, Seiriki K et al (2012) Serotonin 5-HT (7) receptor blockade reverses behavioral abnormalities in PACAP-deficient mice and receptor activation promotes neurite extension in primary embryonic hippocampal neurons: therapeutic implications for psychiatric disorders. J Mol Neurosci 48:473–481

    Article  CAS  PubMed  Google Scholar 

  • Tamas A, Szabadfi K, Nemeth A et al (2012) Comparative examination of inner ear in wild type and pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Neurotox Res 21:435–444

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I (2006) The genetic basis of tooth development and dental defects. Am J Med Genet A 140:2530–2535

    Article  PubMed  Google Scholar 

  • Thesleff I (2014) Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Aust Dent J 59(Suppl 1):48–54

    Article  PubMed  Google Scholar 

  • Thomas DB, Fordyce RE, Frew RD, Gordon KC (2007) A rapid, non-destructive method of detecting diagenetic alteration in fossil bone using Raman spectroscopy. J Raman Spectrosc 38:1533–1537

    Article  CAS  Google Scholar 

  • Thomas DB, McGoverin CM, Fordyce RE, Frew RD, Gordon KC (2011) Raman spectroscopy of fossil bioapatite — a proxy for diagenetic alteration of the oxygen isotope composition. Palaeogeogr Palaeocl 310:62–70

    Article  Google Scholar 

  • Tuson M, He M, Anderson KV (2011) Protein kinase A acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development 138:4921–4930

  • Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H (1999) Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci U S A 96:9415–9420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  CAS  PubMed  Google Scholar 

  • Vincze A, Reglodi D, Helyes Z, Hashimoto H, Shintani N, Abraham H (2011) Role of endogenous pituitary adenylate cyclase activating polypeptide (PACAP) in myelination of the rodent brain: lessons from PACAP-deficient mice. Int J Dev Neurosci 29:923–935

    Article  CAS  PubMed  Google Scholar 

  • Walker MP, Fricke BA (2006) Dentin–enamel junction of human teeth. In: Akay M (ed) Wiley encyclopedia of biomedical engineering. Wiley, Hoboken, pp 1061–1064

    Google Scholar 

  • Wang Y, Spencer P, Walker MP (2007) Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res A 81:279–286

    Article  PubMed Central  PubMed  Google Scholar 

  • Waschek JA (2002) Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev Neurosci 24:14–23

    Article  CAS  PubMed  Google Scholar 

  • Watanabe J, Nakamachi T, Matsuno R et al (2007) Localization, characterization and function of pituitary adenylate cyclase-activating polypeptide during brain development. Peptides 28:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Wojcieszak J, Zawilska JB (2014) PACAP38 and PACAP6-38 exert cytotoxic activity against human retinoblastoma Y79 cells. J Mol Neurosci PMID:24515671

  • Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng 25:131–143

    Article  Google Scholar 

  • Xu C, Yao X, Walker MP, Wang Y (2009) Chemical/molecular structure of the dentin–enamel junction is dependent on the intratooth location. Calcif Tissue Int 84:221–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada K, Matsuzaki S, Hattori T et al (2010) Increased stathmin1 expression in the dentate gyrus of mice causes abnormal axonal arborizations. PLoS One 5:e8596

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan Y, Zhou X, Pan Z, Ma J, Waschek JA, DiCicco-Bloom E (2013) Pro- and anti-mitogenic actions of pituitary adenylate cyclase-activating polypeptide in developing cerebral cortex: potential mediation by developmental switch of PAC1 receptor mRNA isoforms. J Neurosci 33:3865–3878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye L, MacDougall M, Zhang S et al (2004) Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279:19141–19148

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hua F, Yuan GH, Zhang YD, Chen Z (2008) Sonic hedgehog signaling is critical for cytodifferentiation and cusp formation in developing mouse molars. J Mol Histol 39:87–94

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Tamas Papp and Tunde Palne Terdik for technical assistance. This work was supported by PTE-MTA “Lendulet” Program, Arimura Foundation, OTKA K104984, PD109644, TAMOP 4.2.2.A-11/1/KONV-2012-0024, TAMOP 4.2.4.A/2-11-1-2012-0001 “National Excellence Program”, Bolyai Scholarship, Grants from University of Debrecen (RH/885/2013), Grants-in-Aid for Scientific Research, KAKENHI, Grant Numbers 26293020 and 26670122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tamas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandor, B., Fintor, K., Felszeghy, S. et al. Structural and Morphometric Comparison of the Molar Teeth in Pre-eruptive Developmental Stage of PACAP-Deficient and Wild-Type Mice. J Mol Neurosci 54, 331–341 (2014). https://doi.org/10.1007/s12031-014-0392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0392-6

Keywords

Navigation