Skip to main content

Advertisement

Log in

Studies on the Role of Amino Acid Stereospecificity in Amyloid Beta Aggregation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Amyloid beta (Aβ) deposition and neurodegeneration are the two related events in the pathogenesis of Alzheimer’s disease. Several factors modulate the conformation and physical properties of Aβ, which in turn affects its biological functions. Among these, age-dependent changes in the stereospecificity of the amino acids comprising Aβ is one such factors. In the present study, we investigated the aggregation property of Aβ as a function of the stereospecificity of amino acids comprising the peptide. We carried out our study by comparing the physical properties of Aβ(1-40) all-L and Aβ(1-40) all-D enantiomers using various biophysical techniques. These results indicated that the aggregation and folding parameters of Aβ are stereospecific and the aggregation property strongly depends upon the amino acid sequence and their stereospecificity. This may possibly help to understand the stereospecific role of amino acids comprising Aβ in its aggregation and its relevance to neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

amyloid beta

Aβ(1-40) all-L:

amyloid beta peptide consisting of all L-amino acids

Aβ(1-40) all-D:

amyloid beta peptide consisting of all d-amino acids

References

  • Barrow, C. J., & Zagorski, M. G. (1991). Solution structures of beta peptide and its constituent fragments: Relation to amyloid deposition. Science, 253, 179–182.

    Article  PubMed  CAS  Google Scholar 

  • Burdick, D., et al. (1992). Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. Journal of Biological Chemistry, 267, 546–554.

    PubMed  CAS  Google Scholar 

  • Cribbs, D. H., Pike, C. J., Weinstein, S. L., Velazquez, P., & Cotman, C. W. (1997) All-D-enantiomers of beta-amyloid exhibit similar biological properties to all-L-beta-amyloids. Journal of Biological Chemistry, 272, 7431–7436.

    Article  PubMed  CAS  Google Scholar 

  • Deloncle, R., & Guillard, O. (1990). Mechanism of Alzheimer’s disease: Arguments for a neurotransmitter-aluminium complex implication. Neurochemical Research, 15, 1239–1245.

    Article  PubMed  CAS  Google Scholar 

  • Geiger, T., & Clarke, S. (1987). Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. Journal of Biological Chemistry, 262, 785–794.

    PubMed  CAS  Google Scholar 

  • Knauer, M. F., Soreghan, B., Burdick, D., Kosmoski, J., & Glabe, C. G. (1992). Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/ beta protein. Proceedings of the National Academy of Sciences of the United States of America, 89, 7437–7441.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Kumagae, Y., Miller, C. A., & Kaneko, I. (2003). Beta- amyloid racemized at the Ser26 residue in the brains of patients with Alzheimer disease: Implications in the pathogenesis of Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 62, 248–259.

    PubMed  CAS  Google Scholar 

  • Kubo, T., Nishimura, S., Kumagae, Y., & Kaneko I. (2002). In vivo conversion of racemized beta- amyloid ([D-Ser 26] A beta 1-40) to truncated and toxic fragments ([D-Ser 26] Abeta 25-35/40) and fragment presence in the brains of Alzheimer’s patients. Journal of Neuroscience Research, 70, 474–483.

    Article  PubMed  CAS  Google Scholar 

  • Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., et al. (2006) A specific amyloid beta protein assembly in the brain impairs memory. Nature, 440, 352–357.

    Article  PubMed  CAS  Google Scholar 

  • LeVine, H. I. (1993). Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Science, 2, 404–410.

    Article  PubMed  CAS  Google Scholar 

  • Martineau, M., Baux, G., & Mothet, J. P. (2006). Gliotransmission at central glutamatergic synapses: D-serine on stage. Journal of Physiology—Paris, 99, 103–110.

    CAS  Google Scholar 

  • Mori, H., Ishii, K., Tomiiyama, T., Furiya, Y., Sahara, N., Asano, S., et al. (1994) Racemization: Its biological significance on neuropathogenesis of Alzheimer’s disease. Tohoku Journal of Experimental Medicine, 174, 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Rochet, J. C., & Lansbury, P. T. (2000). Amyloid fibrillogenesis: Themes and variations. Current Opinion in Structural Biology, 10, 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, W. G., Becerra, M. S., Milton, S., & Glabe, C. G. (1997). Soluble Amyloid Aβ (1-40) exists as a stable dimer at low concentrations. Journal of Biological Chemistry, 272, 21037–21044.

    Article  Google Scholar 

  • Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., et al. (1993) Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s Disease. Journal of Biological Chemistry, 268, 3072–3083.

    PubMed  CAS  Google Scholar 

  • Semisotnov, G. V., Rodionova, N. A., Kutyshenko, V. P., Ebert, B., Blanck, J., & Ptitsyn, O. B. (1987). Sequential mechanism of refolding of carbonic anhydrase B. FEBS Letters, 224, 9–13.

    Article  PubMed  CAS  Google Scholar 

  • Shapira, R., Wilkinson, K. D., & Shapira, G. (1988). Racemization of individual aspartate residues in human myelin basic protein. Journal of Neurochemistry, 50, 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, T., Watanabe, A., Ogawara, M., Mori, H., & Shirasawa, T. (2000) Isoaspartate formation and neurodegeneration in Alzheimer’s Disease. Archives of Biochemistry and Biophysics, 381, 225–234.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, T. J., & Bloomfield, V. A. (1985). Quasi-elastic laser light scattering and electron microscopy studies of the conformational transitions and condensation of poly (dA-dT).poly(dA-dT). Biopolymers, 24, 2185–2194.

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama, T., Asano, S., Furiya, Y., Shirasawa, T., Endo, N., & Mori, H. (1994). Racemization of Asp23 residue affects the aggregation properties of Alzheimer amyloid beta protein analogues. Journal of Biological Chemistry, 269, 10205–10208.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are indebted to Dr. V. Prakash, Director, Central Food Technological Research Institute, Mysore, for all his support and encouragement. Veer Bala is thankful to the Indian Council of Medical Research (ICMR) for awarding senior research fellowship. This work was supported by the grant from the Department of Biotechnology, Delhi, India. We profoundly thank Dr. Rivka Ravid, Senior Advisor, Netherlands Brain Bank, Amsterdam, The Netherlands, for reviewing the manuscript and for providing the valuable suggestions. The work is supported by CFTRI inhouse project NNP-040 also.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. J. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, V.B., Indi, S.S. & Rao, K.S.J. Studies on the Role of Amino Acid Stereospecificity in Amyloid Beta Aggregation. J Mol Neurosci 34, 35–43 (2008). https://doi.org/10.1007/s12031-007-0070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0070-z

Keywords

Navigation