Skip to main content

Advertisement

Log in

Per-6-substituted β-cyclodextrin libraries inhibit formation of β-amyloid-peptide (Aβ)-derived, soluble oligomers

  • Lead Compound Discovery And Optimization
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is the most common cause of dementia in older individuals with compelling evidence favoring neuron dysfunction and death triggered by assembled forms of Aβ1–42. While large neurotoxic amyloid fibrils have been known for years, recent studies show that soluble protofibril and Aβ1–42-derived diffusible ligands (ADDLs) may also be involved in neurotoxicity. In the present work, dot-blot immunoassays discriminating ADDLs from monomers were used to screen libraries of per-substituted β-cyclodextrin (β-CD) derivatives for inhibition of ADDLs formation. Libraries were prepared from per-6-iodo-β-CD by treatment with various amine nucleophiles. The most active library tested (containing >2000 derivatives) was derived from imidazole, N, N-dimethylethylenediamine and furfurylamine, which at 10 µM total library, inhibited ADDLs formation (10 nM1–42) over a period of 4 hours. The latter was confirmed by a western blot assay showing decreased amounts of the initially formed Aβ1–42 tetramer. These preliminary experiments suggest that derivatized forms of β-CD can interfere with the oligomerization process of Aβ1–42.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton P. R., Koniger R., Stoddart J. F., Alker D., and Harding V. D. (1996) Amino acid derivatives of beta-cyclodextrin. J. Org. Chem. 61, 903–908.

    Article  CAS  Google Scholar 

  • Camilleri P., Haskins J. J., and Howlett D. R. (1994) beta-Cyclodextrin interacts with the Alzheimer amyloid beta-A4 peptide. Fed. Euro. Biochem. Soc. Lett. 341, 256–258.

    CAS  Google Scholar 

  • Drouet B., Pincon-Raymond M., and Chambaz J, Pillot T. (1999) Laminin 1 attenuates beta-amyloid peptide Abeta (1–40) neurotoxicity of cultured fetal rat cortical neurons. J. Neurochem. 73, 742–749.

    Article  PubMed  CAS  Google Scholar 

  • Givol D. (1974) Affinity labeling and topology of the antibody combining site. Essays Biochem. 10, 73–103.

    PubMed  CAS  Google Scholar 

  • Golde T. E., Eckman C. B., and Younkin S. G. (2000) Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. J. Biochem. Biophys. Acta 1502, 172–187.

    CAS  Google Scholar 

  • Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., et al. (1999) Profibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884.

    PubMed  CAS  Google Scholar 

  • Howlett D., Cutler P., Heales S., and Camilleri P. (1997) Hemin and related porphyrins inhibit beta-amyloid aggregation. Fed. Euro. Biochem. Soc. Lett. 417, 249–251.

    CAS  Google Scholar 

  • Howlett D. R., Perry A. E., Godfrey F., Swatton J. E., Jennings K. H., Spitzfaden C., et al. (1999) Inhibition of fibril formation in beta-amyloid peptide by a novel series of benzofurans. Biochem. J. 340, 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Hsia A. Y., Masliah E., McConlogue I., Yu G. Q., Tatsuno G., Hu K., et al. (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA 96, 3228–3233.

    Article  PubMed  CAS  Google Scholar 

  • Klein W. L. (2001) Fibrils, Protofibrils & Abeta-Derived Diffusible Ligands: How Abeta Causes Neuron Dysfunction and Death in Alzheimer’s Disease. Humana Press, Totowa, NJ.

    Google Scholar 

  • Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lambert M. P., Viola K. L., Cromy B. A., Chang L., Morgan T. E., Yu J., et al. (2001) Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J. Neurochem., 79, 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Longo V. D., Viola K. L., Klein W. L., and Finch C. E. (2000) Reversible inactivation of superoxide-sensitive aconitase in Abeta1-42-treated neuronal cell lines. J. Neurochem. 75, 12243–12247.

    Article  Google Scholar 

  • Lorenzo A. and Yankner B. A. (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. USA 91, 12243–12247.

    Article  PubMed  CAS  Google Scholar 

  • Mucke L., Masliah E., Yu G. Q., Mallory M., Rockenstein E. M., Tatsuno G., et al. (2000) High-level neuronal expression of Abeta 1–42 in wild-type human amy-loid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058.

    PubMed  CAS  Google Scholar 

  • Pappolla M., Bozner P., Soto C., Shao H., Robakis N. K., Zagorski M., Frangione B., and Ghiso J. (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J. Biol. Chem. 273, 7185–7188.

    Article  PubMed  CAS  Google Scholar 

  • Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., Cotman C. W. (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13, 1676–1687.

    PubMed  CAS  Google Scholar 

  • Schubert D. (1997) Serpins inhibit the toxicity of amyloid peptides. Eur. J. Neurosci. 9, 770–777.

    Article  PubMed  CAS  Google Scholar 

  • Small D.H. (1998) The amyloid cascade hypothesis debate: emerging consensus on the role of Abeta and amyloid in Alzheimer’s disease. The Sixth International Conference on Alzheimer’s disease, Amsterdam, The Netherlands, pp. 301–304.

  • Solomon B., Koppel R., Frankel D., and Hanan-Aharon E. (1997) Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA 94, 4109–4112.

    Article  PubMed  CAS  Google Scholar 

  • Solomon B., Koppel R., Hanan E., and Katzav T. (1996) Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc. Natl. Acad. Sci. USA 93, 452–455.

    Article  PubMed  CAS  Google Scholar 

  • Soto C., Kindy M. S., Baumann M., and Frangione B. (1996) Inhibition of Alzheimer’s amyloidosis by peptides that prevent beta-sheet conformation. Biochem. Biophys. Res. Comm. 226, 672–680.

    Article  PubMed  CAS  Google Scholar 

  • Soto C., Sigurdsson E. M., Morelli L., Kumar R. A., Castano E. M., and Frangione B. (1998) Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy [see comments]. Nature Med. 4, 822–826.

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama T., Asano S., Suwa Y., Morita T., Kataoka K., Mori H., and Endo N. (1994) Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem. Biophys. Res. Commun. 204, 76–83.

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama T., Shoji A., Kataoka K., Suwa Y., Asano S., Kaneko H., and Endo N. (1996) Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J. Biol. Chem. 271, 6839–6844.

    Article  PubMed  CAS  Google Scholar 

  • Waite J., Cole G. M., Frautschy S. A., Connor D. J., and Thal L. J. (1992) Solvent effects on beta protein toxicity in vivo. Neurobiol. Aging 13, 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Walsh D. M., Hartley D. M., Kusumoto Y., Fezoui Y., Condron M. M., Lomakin A., et al. (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945–25952.

    Article  PubMed  CAS  Google Scholar 

  • Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., and Teplow D. B. (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372.

    Article  PubMed  CAS  Google Scholar 

  • Wood S. J., MacKenzie L., Maleff B., Hurle M. R., and Wetzel R. (1996) Selective inhibition of Abeta fibril formation. J. Biol. Chem. 271, 4086–4092.

    Article  PubMed  CAS  Google Scholar 

  • Yu G. S., Hu J., and Nakagawa H. (1998) Inhibition of beta-amyloid cytotoxicity by midkine. Neurosci. Lett. 254, 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Yu J., Zhao Y., Holterman M. J., and Venton D. L. (1999) Combinatorial search of substituted beta-cyclodextrins for phosphatase-like activity. Bioorg. Med. Chem. Lett. 9, 2705–2710.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane L. Venton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Bakhos, L., Chang, L. et al. Per-6-substituted β-cyclodextrin libraries inhibit formation of β-amyloid-peptide (Aβ)-derived, soluble oligomers. J Mol Neurosci 19, 51–55 (2002). https://doi.org/10.1007/s12031-002-0010-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-002-0010-x

Index Entries

Navigation