Skip to main content
Log in

Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created.

Code Availability

NA

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin Wiley. 2021;71:209–49. Available from: https://doi.org/10.3322/caac.21660

  2. Reed KK, Wickham R. Review of the gastrointestinal tract: from macro to micro. Semin Oncol Nurs. 2009;25:3–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749208108000739

  3. Donohoe CL, O’Farrell NJ, Doyle SL, Reynolds J V. The role of obesity in gastrointestinal cancer: evidence and opinion. Therap Adv Gastroenterol. 2014;7:38–50. Available from: http://journals.sagepub.com/doi/https://doi.org/10.1177/1756283X13501786

  4. Li LF, Chan RLY, Lu L, Shen J, Zhang L, Wu WKK, et al. Cigarette smoking and gastrointestinal diseases: the causal relationship and underlying molecular mechanisms (review) Int J Mol Med. Spandidos Publications. 2014 ;372–80. Available from: https://pubmed.ncbi.nlm.nih.gov/24859303/

  5. La Vecchia C, Negri E, Gentile A, Franceschi S. Family history and the risk of stomach and colorectal cancer. Cancer. 1992 ;70:50–5. Available from: https://pubmed.ncbi.nlm.nih.gov/1606546/

  6. Zali H, Rezaei-Tavirani M, Azodi M. Gastric cancer: prevention, risk factors and treatment. Gastroenterol Hepatol from bed to bench. 2011;4:175–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24834180

  7. Zong WX, Rabinowitz JD, White E. Mitochondria and cancer Mol Cell Cell Press. 2016;667–76. Available from: https://pubmed.ncbi.nlm.nih.gov/26942671/

  8. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence Semin Cell Dev Biol. Elsevier Ltd. 2020 139–53. Available from: https://pubmed.ncbi.nlm.nih.gov/31154010/

  9. Ježek J, Cooper KF, Strich R. Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel, Switzerland). 2018;7:13. Available from: http://www.mdpi.com/2076-3921/7/1/13

  10. Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab Bailliere Tindall Ltd. 2012;711–23. Available from: https://pubmed.ncbi.nlm.nih.gov/23168274/

  11. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. ROS and ROS-mediated cellular signaling Oxid Med Cell Longev. Hindawi Limited. 2016. Available from: https://pubmed.ncbi.nlm.nih.gov/26998193/

  12. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909–50. Available from: https://doi.org/10.1152/physrev.00026.2013

  13. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication Biochim. Biophys. Acta - Bioenerg. Biochim Biophys Acta. 1999;103–23. Available from: https://pubmed.ncbi.nlm.nih.gov/10076021/

  14. Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov AI, Bogdanova A, et al. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis Electrophoresis. 2000;3427–40. Available from: https://pubmed.ncbi.nlm.nih.gov/11079563/

  15. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease J. Pathol. John Wiley and Sons Ltd. 2017;236–50. Available from: https://pubmed.ncbi.nlm.nih.gov/27659608/

  16. Tan BG, Wellesley FC, Savery NJ, Szczelkun MD. Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity. Nucleic Acids Res Oxford University Press. 2016;44:7817–29. Available from: https://pubmed.ncbi.nlm.nih.gov/27436287/

  17. Brown WM, Shine J, Goodman HM. Human mitochondrial DNA: analysis of 7S DNA from the origin of replication. Proc Natl Acad Sci U S A Proc Natl Acad Sci U S A. 1978;75:735–9. Available from: https://pubmed.ncbi.nlm.nih.gov/273237/

  18. Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol Elsevier Inc. 2014;56:175–81. Available from: https://pubmed.ncbi.nlm.nih.gov/24709344/

  19. Mishra M, Kowluru RA. Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy. Investig Ophthalmol Vis Sci Association for Research in Vision and Ophthalmology Inc. 2015;56:5133–42. Available from: https://pubmed.ncbi.nlm.nih.gov/26241401/

  20. Pirola CJ, Fernández Gianotti T, Burgueño AL, Rey-Funes M, Loidl CF, Mallardi P, et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut. 2013;62:1356–63. Available from: https://pubmed.ncbi.nlm.nih.gov/22879518/

  21. Sun X, St John JC. Modulation of mitochondrial DNA copy number in a model of glioblastoma induces changes to DNA methylation and gene expression of the nuclear genome in tumours. Epigenetics and Chromatin BioMed Central Ltd.. 2018;11. Available from: https://pubmed.ncbi.nlm.nih.gov/30208958/

  22. Yasukawa T, Kang D. An overview of mammalian mitochondrial DNA replication mechanisms J. Biochem. Oxford University Press. 2018;183–93. Available from: https://pubmed.ncbi.nlm.nih.gov/29931097/

  23. Clayton DA. Transcription and replication of mitochondrial DNA. Hum Reprod Oxford University Press. 2000;11–7. Available from: https://pubmed.ncbi.nlm.nih.gov/11041509/

  24. Holt IJ, Reyes A. Human mitochondrial DNA replication. Cold Spring Harb Perspect Biol. 2012;4. Available from: https://pubmed.ncbi.nlm.nih.gov/23143808/

  25. Farge GÉR, Falkenberg M. Organization of DNA in mammalian mitochondria Int. J. Mol. Sci. MDPI AG. 2019. Available from: https://pubmed.ncbi.nlm.nih.gov/31195723/

  26. Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA, Grutter P, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell. 2007;18:3225–36. Available from: https://pubmed.ncbi.nlm.nih.gov/17581862/

  27. Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase γ in mitochondrial DNA replication and repair Chem. Rev. 2006;383–405. Available from: https://pubmed.ncbi.nlm.nih.gov/16464011/

  28. Kanki T, Ohgaki K, Gaspari M, Gustafsson CM, Fukuoh A, Sasaki N, et al. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol. 2004;24:9823–34. Available from: https://pubmed.ncbi.nlm.nih.gov/15509786/

  29. Johannsen DL, Ravussin E. The role of mitochondria in health and disease Curr. Opin. Pharmacol. 2009;780–6. Available from: https://pubmed.ncbi.nlm.nih.gov/19796990/

  30. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, et al. Role of ROS and nutritional antioxidants in human diseases Front Physiol Media S.A. 2018. Available from: https://pubmed.ncbi.nlm.nih.gov/29867535/

  31. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer Chem. Biol. Interact. Elsevier Ireland Ltd. 2006;1–40. Available from: https://pubmed.ncbi.nlm.nih.gov/16430879/

  32. Brown NS, Bicknell R. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res. 2001;323–7. Available from: https://pubmed.ncbi.nlm.nih.gov/11597322/

  33. Shinohara M, Adachi Y, Mitsushita J, Kuwabara M, Nagasawa A, Harada S, et al. Reactive oxygen generated by NADPH oxidase 1 (Nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J Biol Chem. 2010;285:4481–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20018867/

  34. WARBURG O. On the origin of cancer cells. Science. 1956;123:309–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13298683

  35. Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review) Oncol. Lett. Spandidos Publications. 2012;1151–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506713/

  36. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer Cell. Cell Press. 2016;555–66. Available from: https://pubmed.ncbi.nlm.nih.gov/27471965/

  37. Liberti M V., Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. Elsevier Ltd. 2016;211–8. Available from: https://pubmed.ncbi.nlm.nih.gov/26778478/

  38. Zong W-X, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61:667–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1097276516000952

  39. Mayr JA, Meierhofer D, Zimmermann F, Feichtinger R, Kögler C, Ratschek M, et al. Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res. 2008;14:2270–5. Available from: https://pubmed.ncbi.nlm.nih.gov/18413815/

  40. Lang M, Vocke CD, Merino MJ, Schmidt LS, Linehan WM. Mitochondrial DNA mutations distinguish bilateral multifocal renal oncocytomas from familial Birt-Hogg-Dubé tumors. Mod Pathol Nature Publishing Group. 2015;28:1458–69. Available from: https://pubmed.ncbi.nlm.nih.gov/26428318/

  41. Hasumi H, Baba M, Hasumi Y, Huang Y, Oh H, Hughes RM, et al. Regulation of mitochondrial oxidative metabolism by tumor suppressor FLCN. J Natl Cancer Inst. 2012;104:1750–64. Available from: https://pubmed.ncbi.nlm.nih.gov/23150719/

  42. Herst PM, Dawson RH, Berridge M V. Intercellular Communication in Tumor Biology : A Role for Mitochondrial Transfer. 2019;1–8.

  43. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy Nat. Chem. Biol. Nature Publishing Group. 2015;9–15. Available from: https://pubmed.ncbi.nlm.nih.gov/25517383/

  44. Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy Nat Rev Drug Discov. 2010;447–64. Available from: https://pubmed.ncbi.nlm.nih.gov/20467424/

  45. Santos LC, Vogel R, Chipuk JE, Birtwistle MR, Stolovitzky G, Meyer P. Mitochondrial origins of fractional control in regulated cell death. Nat Commun Nature Publishing Group. 2019;10. Available from: https://pubmed.ncbi.nlm.nih.gov/30899020/

  46. van Gisbergen MW, Voets AM, Starmans MHW, de Coo IFM, Yadak R, Hoffmann RF, et al. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat Res - Rev Mutat Res Elsevier B.V. 2015;764:16–30. Available from: https://doi.org/10.1016/j.mrrev.2015.01.001

  47. Tyagi A, Pramanik R, Vishnubhatla S, Ali S, Bakhshi R, Chopra A, et al. Pattern of mitochondrial D-loop variations and their relation with mitochondrial encoded genes in pediatric acute myeloid leukemia. Mutat Res - Fundam Mol Mech Mutagen Elsevier B.V. 2018;810:13–8. Available from: https://pubmed.ncbi.nlm.nih.gov/29883862/

  48. Shu HY, Li HC, Xie WQ, Ni B, Zhou HY. Mitochondrial dna variations in tongue squamous cell carcinoma. Biomed Reports Spandidos Publications. 2019;10:23–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30588299/

  49. Yin C, Li DY, Guo X, Cao HY, Chen YB, Zhou F, et al. NGS-based profiling reveals a critical contributing role of somatic D-loop mtDNA mutations in HBV-related hepatocarcinogenesis. Ann Oncol Oxford University Press. 2019;30:953–62. Available from: https://pubmed.ncbi.nlm.nih.gov/30887045/

  50. Mposhi A, Van der Wijst MG, Faber KN, Rots MG. Regulation of mitochondrial gene expression, the epigenetic enigma. Front Biosci (Landmark Ed.). 2017;22:1099–113. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28199194

  51. Chen N, Wen S, Sun X, Fang Q, Huang L, Liu S, et al. Elevated mitochondrial DNA copy number in peripheral blood and tissue predict the opposite outcome of cancer: a meta-analysis. Sci Rep. 2016;6:37404. Available from: http://www.nature.com/articles/srep37404

  52. He X, Qu F, Zhou F, Zhou X, Chen Y, Guo X, et al. High leukocyte mtDNA content contributes to poor prognosis through ROS-mediated immunosuppression in hepatocellular carcinoma patients. Oncotarget Impact Journals LLC. 2016;7:22834–45. Available from: https://pubmed.ncbi.nlm.nih.gov/26985767/

  53. Kalsbeek AMF, Chan EKF, Grogan J, Petersen DC, Jaratlerdsiri W, Gupta R, et al. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer. Prostate. 2018.

  54. Robin ED, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol. 1988 ;136:507–13. Available from: https://pubmed.ncbi.nlm.nih.gov/3170646/

  55. Bogenhagen D, Clayton DA. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem. 1974;249:7991–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4473454

  56. Veltri KL, Espiritu M, Singh G. Distinct genomic copy number in mitochondria of different mammalian organs. J Cell Physiol. 1990;143:160–4. Available from: https://pubmed.ncbi.nlm.nih.gov/2318903/

  57. Alikhani M, Touati E, Karimipoor M, Vosough M, Eybpoosh S, Mohammadi M. Dynamic changes of mitochondrial DNA copy number in gastrointestinal tract cancers: a systematic review and meta-analysis. Cancer Invest. 2020;1–35. Available from: https://doi.org/10.1080/07357907.2020.1857394

  58. Kelly RDW, Mahmud A, McKenzie M, Trounce IA, St John JC. Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res. 2012;40:10124–38. Available from: https://doi.org/10.1093/nar/gks770

  59. Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, et al. Mitochondrial DNA copy number variation across human cancers. Elife. 2016;e10769.

  60. Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion. 2013;13:481–92. Available from: https://pubmed.ncbi.nlm.nih.gov/23085537/

  61. Yu M. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci Elsevier Inc.; 2011;89:65–71. Available from: https://doi.org/10.1016/j.lfs.2011.05.010

  62. Ju YS, Tubio JMC, Mifsud W, Fu B, Davies HR, Ramakrishna M, et al. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Res Cold Spring Harbor Laboratory Press. 2015;25:814–24. Available from: https://pubmed.ncbi.nlm.nih.gov/25963125/

  63. Lee W, Johnson J, Gough DJ, Donoghue J, Cagnone GLM, Vaghjiani V, et al. Mitochondrial DNA copy number is regulated by DNA methylation and demethylation of POLGA in stem and cancer cells and their differentiated progeny. Cell Death Dis. 2015

  64. Stoccoro A, Mosca L, Carnicelli V, Cavallari U, Lunetta C, Marocchi A, et al. Mitochondrial DNA copy number and D-loop region methylation in carriers of amyotrophic lateral sclerosis gene mutations. Epigenomics Future Medicine Ltd. 2018;10:1431–43. Available from: https://pubmed.ncbi.nlm.nih.gov/30088417/

  65. Medeiros TC, Thomas RL, Ghillebert R, Graef M. Autophagy balances mtDNA synthesis and degradation by DNA polymerase POLG during starvation. J Cell Biol. 2018;217:1601–11.

    Article  CAS  Google Scholar 

  66. Medeiros TC, Graef M. Autophagy determines mtDNA copy number dynamics during starvation Autophagy. Taylor and Francis Inc. 2019;178–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30301401/

  67. Li Z, Zhu M, Du J, Ma H, Jin G, Dai J. Genetic variants in nuclear DNA along with environmental factors modify mitochondrial DNA copy number: a population-based exome-wide association study. BMC Genomics 2018;19:5142–7. Available from: https://doi.org/10.1186/s12864-018-5142-7

  68. Kim JH, Kim HK, Ko JH, Bang H, Lee DC. The tract cancers: a systematic review and meta-analysis DNA copy number and telomere length in community-dwelling elderly women. PLoS One. 2013;8. Available from: https://pubmed.ncbi.nlm.nih.gov/23785520/

  69. Alegría-Torres JA, Velázquez-Villafaña M, López-Gutiérrez JM, Chagoyán-Martínez MM, Rocha-Amador DO, Costilla-Salazar R, et al. Association of Leuk ocyte telomere length and mitochondrial DNA copy number in children from Salamanca, Mexico. Genet Test Mol Biomarkers Mary Ann Liebert Inc. 2016;20:654–9. Available from: https://pubmed.ncbi.nlm.nih.gov/27622310/

  70. Zole E, Zadinane K, Pliss L, Ranka R. Linkage between mitochondrial genome alterations, telomere length and aging population. Mitochondrial DNA Part A DNA Mapping, Seq Anal Taylor and Francis Ltd. 2018;29:431–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28340313/

  71. Jung SJ, Cho JH, Park WJ, Heo YR, Lee JH. Telomere length is correlated with mitochondrial DNA copy number in intestinal, but not diffuse, gastric cancer. Oncol Lett. 2017;14:925–9.

    Article  CAS  Google Scholar 

  72. Hulgan T, Robbins GK, Kalams SA, Samuels DC, Grady B, Shafer R, et al. T cell activation markers and African mitochondrial DNA Haplogroups among non-hispanic black participants in AIDS clinical trials group study 384. PLoS One. 2012;7. Available from: https://pubmed.ncbi.nlm.nih.gov/22970105/

  73. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses invivo. Immunity Cell Press. 2015;42:41–54. Available from: https://pubmed.ncbi.nlm.nih.gov/25607458/

  74. Hori A, Yoshida M, Ling F. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast. Genes Cells. 2011;16:527–44. Available from: https://pubmed.ncbi.nlm.nih.gov/21463454/

  75. Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: the role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta - Mol Basis Dis. 2019;1865:285–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30419337

  76. Sadakierska-Chudy A, Kotarska A, Frankowska M, Jastrzębska J, Wydra K, Miszkiel J, et al. The alterations in mitochondrial DNA copy number and nuclear-encoded mitochondrial genes in rat brain structures after cocaine self-administration. Mol Neurobiol. 2017;54:7460–70. Available from: http://link.springer.com/https://doi.org/10.1007/s12035-016-0153-3

  77. Chatre L, Fernandes J, Michel V, Fiette L, Avé P, Arena G, et al. Helicobacter pylori targets mitochondrial import and components of mitochondrial DNA replication machinery through an alternative VacA-dependent and a VacA-independent mechanisms. Sci Rep. 2017;7:15901. Available from: http://www.nature.com/articles/s41598-017-15567-3

  78. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases Indian J. Clin. Biochem. Springer India. 2015;11–26. Available from: https://pubmed.ncbi.nlm.nih.gov/25646037/

  79. Robinson JM. Reactive oxygen species in phagocytic leukocytes Histochem. Cell Biol. 2008;281–97. Available from: https://pubmed.ncbi.nlm.nih.gov/18597105/

  80. Lee HC, Yin PH, Lu CY, Chi CW, Wei YH. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J. 2000;348 Pt 2:425–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10816438

  81. Chatterjee A, Dasgupta S, Sidransky D. Mitochondrial subversion in cancer. Cancer Prev. Res (Phila). 2011 638–54. Available from: https://pubmed.ncbi.nlm.nih.gov/21543342/

  82. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13. Available from: http://biochemj.org/lookup/doi/https://doi.org/10.1042/BJ20081386

  83. Ikeda M, Ide T, Fujino T, Arai S, Saku K, Kakino T, et al. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. PLoS One Public Library of Sci. 2015;10. Available from: https://pubmed.ncbi.nlm.nih.gov/25822152/

  84. Fujino T, Ide T, Yoshida M, Onitsuka K, Tanaka A, Hata Y, et al. Recombinant mitochondrial transcription factor A protein inhibits nuclear factor of activated T cells signaling and attenuates pathological hypertrophy of cardiac myocytes. Mitochondrion Mitochondrion. 2012;12:449–58. Available from: https://pubmed.ncbi.nlm.nih.gov/22709542/

  85. Bouchez C, Devin A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway. Cells MDPI AG. 2019 ;8:287. Available from: https://pubmed.ncbi.nlm.nih.gov/30934711/

  86. Hori A, Yoshida M, Shibata T, Ling F. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication. Nucleic Acids Res Oxford University Press. 2009;37:749–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19074198

  87. Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging Front. Physiol. Frontiers Media SA. 2014. Available from: https://pubmed.ncbi.nlm.nih.gov/24616707/

  88. Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res - Fundam Mol Mech Mutagen Mutat Res. 2004;547:71–8. Available from: https://pubmed.ncbi.nlm.nih.gov/15013701/

  89. Shokolenko I, Venediktova N, Bochkareva A, Wilson GI, Alexeyev MF. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 2009;37:2539–48. Available from: https://pubmed.ncbi.nlm.nih.gov/19264794/

  90. Su X, Wang W, Ruan G, Liang M, Zheng J, Chen Y, et al. A comprehensive characterization of mitochondrial genome in papillary thyroid cancer. Int J Mol Sci MDPI AG. 2016;17. Available from: https://pubmed.ncbi.nlm.nih.gov/27735863/

  91. Nissanka N, Minczuk M, Moraes CT. Mechanisms of mitochondrial DNA deletion formation Trends Genet. Elsevier Ltd. 2019 235–44. Available from: https://pubmed.ncbi.nlm.nih.gov/30691869/

  92. Kulawiec M, Ayyasamy V, Singh KK. p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog. 2009;8. Available from: https://pubmed.ncbi.nlm.nih.gov/19439913/

  93. Singh KK, Ayyasamy V, Owens KM, Koul MS, Vujcic M. Mutations in mitochondrial DNA polymerase-γ promote breast tumorigenesis. J Hum Genet. 2009;54:516–24. Available from: https://pubmed.ncbi.nlm.nih.gov/19629138/

  94. Yen MY, Chen CS, Wang AG, Wei YH. Increase of mitochondrial DNA in blood cells of patients with Leber’s hereditary optic neuropathy with 11778 mutation. Br J Ophthalmol. 2002;86:1027–30. Available from: https://pubmed.ncbi.nlm.nih.gov/12185132/

  95. Wong JYY, Hu W, Downward GS, Seow WJ, Bassig BA, Ji BT, et al. Personal exposure to fine particulate matter and benzo[a]pyrene from indoor air pollution and leukocyte mitochondrial DNA copy number in rural China. Carcinogenesis Oxford University Press. 2017;38:893–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28911003/

  96. Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, et al. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study. Environ Health Perspect Public Health Services, US Dept of Health Human Serv. 2016;124:943–50. Available from: https://pubmed.ncbi.nlm.nih.gov/26672058/

  97. Schneider JS, Cheng X, Zhao Q, Underbayev C, Gonzalez JP, Raveche ES, et al. Reversible mitochondrial DNA accumulation in nuclei of pluripotent stem cells. Stem Cells Dev Mary Ann Liebert Inc. 2014;23:2712–9. Available from: https://pubmed.ncbi.nlm.nih.gov/24964274/

  98. J W Shay, T Baba, Q M Zhan, N Kamimura JAC. HeLaTG cells have mitochondrial DNA inserted into the c-myc oncogene - PubMed. Oncogene. 1995;6:1869–74. Available from: https://pubmed.ncbi.nlm.nih.gov/1923509/

  99. Srinivasainagendra V, Sandel MW, Singh B, Sundaresan A, Mooga VP, Bajpai P, et al. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma. Genome Med BioMed Central Ltd. 2017;9. Available from: https://pubmed.ncbi.nlm.nih.gov/28356157/

  100. Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress Science (80). Am Assoc Adv Sci. 2012;1062–5. Available from: https://pubmed.ncbi.nlm.nih.gov/22936770/

  101. Lin C-S, Huang Y-Y, Pan S-C, Cheng C-T, Liu C-C, Shih C-H, et al. Involvement of increased p53 expression in the decrease of mitochondrial DNA copy number and increase of SUVmax of FDG-PET scan in esophageal squamous cell carcinoma. Mitochondrion. 2019;47:54–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567724918300886

  102. Tong H, Zhang L, Gao J, Wen S, Zhou H, Feng S. Methylation of mitochondrial DNA displacement loop region regulates mitochondrial copy number in colorectal cancer. Mol Med Rep Spandidos Publications. 2017;16:5347–53. Available from: https://pubmed.ncbi.nlm.nih.gov/28849075/

  103. Coppedè F, Stoccoro A. Mitoepigenetics and neurodegenerative diseases Front. Endocrinol. (Lausanne). Frontiers Media S.A. 2019 Available from: https://pubmed.ncbi.nlm.nih.gov/30837953/

  104. Castegna A, Iacobazzi V, Infantino V. The mitochondrial side of epigenetics. Physiol Genom Am Physiol Soc. 2015;47:299–307. Available from: https://pubmed.ncbi.nlm.nih.gov/26038395/

  105. Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res Cardiovasc Res; 2008;79:208–17. Available from: https://pubmed.ncbi.nlm.nih.gov/18430751/

  106. Bam S, Buchanan E, Mahony C, O’Ryan C. DNA methylation of PGC-1α is associated with elevated mtDNA copy number and altered urinary metabolites in autism spectrum disorder. Front cell Dev Biol. 2021;9. Available from: https://pubmed.ncbi.nlm.nih.gov/34381777/

  107. Xiao F-H, Wang H-T, Kong Q-P. Dynamic DNA methylation during aging: a “prophet” of age-related outcomes. Front Genet. 2019;0:107.

  108. Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction Biogerontology. Springer Netherlands. 2019. Available from: https://pubmed.ncbi.nlm.nih.gov/30229407/

  109. Lingner J, Cooper JP, Cech TR. Telomerase and DNA end replication: no longer a lagging strand problem? Science (80). Science. 1995;1533–4. Available from: https://pubmed.ncbi.nlm.nih.gov/7545310/

  110. Lee H, Cho JH, Park WJ, Jung SJ, Choi IJ, Lee JH. Loss of the association between telomere length and mitochondrial DNA copy number contribute to colorectal carcinogenesis. Pathol Oncol Res. 2018;24:323–8.

  111. Zole E, Ranka R. Mitochondria, its DNA and telomeres in ageing and human population Biogerontology. Springer Netherlands. 2018;189–208. Available from: https://pubmed.ncbi.nlm.nih.gov/29488130/

  112. Zhu X, Mao Y, Huang T, Yan C, Yu F, Du J, et al. High mitochondrial DNA copy number was associated with an increased gastric cancer risk in a Chinese population. Mol Carcinog. 2017;56:2593–600.

    Article  CAS  Google Scholar 

  113. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity Immunity. Cell Press. 2015;406–17. Available from: https://pubmed.ncbi.nlm.nih.gov/25786173/

  114. Banoth B, Cassel SL. Mitochondria in innate immune signaling Transl. Res Mosby Inc. 2018;52–68. Available from: https://pubmed.ncbi.nlm.nih.gov/30165038/

  115. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science (80- ) American Association for the Advancement of Science; 1996;272:60–6. Available from: https://pubmed.ncbi.nlm.nih.gov/8600538/

  116. von Andrian UH, Mackay CR. T-cell function and migration — two sides of the same coin. N Engl J Med Massachusetts Med Soc. 2000;343:1020–34. Available from: https://pubmed.ncbi.nlm.nih.gov/11018170/

  117. Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006;16:3–15.

    Article  CAS  Google Scholar 

  118. Alikhani M, Saberi S, Esmaeili M, Michel V, Tashakoripour M, Abdirad A, et al. Mitochondrial DNA copy number variations and serum pepsinogen levels for risk assessment in gastric cancer. Iran Biomed J. 2021;25:323–3. Available from: https://pubmed.ncbi.nlm.nih.gov/34425651/

  119. Sun X, Zhan L, Chen Y, Wang G, He L, Wang Q, et al. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduct Target Ther Springer US. 2018;3:8. Available from: http://www.nature.com/articles/s41392-018-0011-z

  120. Pla-Martin D, Wiesner RJ. Reshaping membranes to build mitochondrial DNA. PLoS Genet Public Library of Sci. 2019;15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553704/

  121. Lee HC, Lu CY, Fahn HJ, Wei YH. Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett FEBS Lett; 1998 ;441:292–6. Available from: https://pubmed.ncbi.nlm.nih.gov/9883902/

  122. Mengel-From J, Thinggaard M, Dalgård C, Kyvik KO, Christensen K, Christiansen L. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum Genet Springer Verlag. 2014;133:1149–59. Available from: https://pubmed.ncbi.nlm.nih.gov/24902542/

  123. JW L, KD P, JA I, MY K, DC L. Mitochondrial DNA copy number in peripheral blood is associated with cognitive function in apparently healthy elderly women. Clin Chim Acta. 2010;411:592–6. Available from: https://pubmed.ncbi.nlm.nih.gov/20114042/

  124. Xia CY, Liu Y, Yang HR, Yang HY, Liu JX, Ma YN, et al. Reference intervals of mitochondrial DNA copy number in peripheral blood for Chinese minors and adults. Chin Med J (Engl) Chinese Med Assoc. 2017;130:2435–40. Available from: https://pubmed.ncbi.nlm.nih.gov/29052564/

  125. Lee HK, Song JH, Shin CS, Park DJ, Park KS, Lee KU, et al. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract Diabetes Res Clin Pract. 1998;42:161–7. Available from: https://pubmed.ncbi.nlm.nih.gov/9925346/

  126. Escoll P, Mondino S, Rolando M, Buchrieser C. Targeting of host organelles by pathogenic bacteria: A sophisticated subversion strategy. Nat Rev Microbiol Nature Publishing Group. 2015;14:5–19. Available from: https://pubmed.ncbi.nlm.nih.gov/26594043/

  127. Kusters JG, Van Vliet AHM, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev American Society for Microbiology (ASM). 2006;19:449–90. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1539101/

  128. Kusters JG, Van Vliet AHM, Kuipers EJ. Pathogenesis of Helicobacter pylori infection Clin Microbiol Rev. 2006;449–90. Available from: https://pubmed.ncbi.nlm.nih.gov/16847081/

  129. Adler I, Muiño A, Aguas S, Harada L, Diaz M, Lence A, et al. Helicobacter pylori and oral pathology: relationship with the gastric infection World J. Gastroenterol. WJG Press. 2014;9922–35. Available from: https://pubmed.ncbi.nlm.nih.gov/25110422/

  130. Kumar S, Dhiman M. Inflammasome activation and regulation during Helicobacter pylori pathogenesis Microb Pathog. Academic Press. 2018;468–74. Available from: https://pubmed.ncbi.nlm.nih.gov/30316008/

  131. Li K, Qu S, Chen X, Wu Q, Shi M. Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. Int J Mol Sci MDPI AG. 2017;18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343938/

  132. Song Y, Hussain T, Wang J, Liao Y, Yue R, Sabir N, et al. Mitochondrial transcription factor A regulates mycobacterium bovis-induced IFN-β production by modulating mitochondrial DNA replication in macrophages. J Infect Dis NLM (Medline). 2020;221:438–48. Available from: https://pubmed.ncbi.nlm.nih.gov/31495880/

Download references

Funding

This project was supported by a grant #833 from Pasteur Institute of Iran, as partial fulfillment of MA Ph.D. dissertation (code: TP-9347).

Author information

Authors and Affiliations

Authors

Contributions

MA and MM designed, wrote, and revised the manuscripts. ET, MK, and MV provided revisions. MM supervised the entire process.

Corresponding author

Correspondence to Marjan Mohammadi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikhani , M., Touati, E., Karimipoor, M. et al. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Canc 53, 770–781 (2022). https://doi.org/10.1007/s12029-021-00707-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00707-w

Keywords

Navigation