Skip to main content

Advertisement

Log in

Prostacyclin Influences the Pressure Reactivity in Patients with Severe Traumatic Brain Injury Treated with an ICP-Targeted Therapy

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

This prospective consecutive double-blinded randomized study investigated the effect of prostacyclin on pressure reactivity (PR) in severe traumatic brain injured patients. Other aims were to describe PR over time and its relation to outcome.

Methods

Blunt head trauma patients, Glasgow coma scale ≤8, age 15–70 years were included and randomized to prostacyclin treatment (n = 23) or placebo (n = 25). Outcome was assessed using the extended Glasgow outcome scale (GOSE) at 3 months. PR was calculated as the regression coefficient between the hourly mean values of ICP versus MAP. Pressure active/stable was defined as PR ≤0.

Results

Mean PR over 96 h (PRtot) was 0.077 ± 0.168, in the prostacyclin group 0.030 ± 0.153 and in the placebo group 0.120 ± 0.173 (p < 0.02). There was a larger portion of pressure-active/stable patients in the prostacyclin group than in the placebo group (p < 0.05). Intra-individual changes over time were common. PRtot correlated negatively with GOSE score (p < 0.04). PRtot was 0.117 ± 0.182 in the unfavorable (GOSE 1–4) and 0.029 ± 0.140 in the favorable outcome group (GOSE 5–8). Area under the curve for prediction of death (ROC) was 0.742 and for favorable outcome 0.628.

Conclusions

Prostacyclin influenced the PR in a direction of increased pressure stability and a lower PRtot was associated with improved outcome. The individual PR varied substantially over time. The predictive value of PRtot for outcome was not solid enough to be used in the clinical situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cold GE. Cerebral blood flow in acute head injury. The regulation of cerebral blood flow and metabolism during the acute phase of head injury, and its significance for therapy. Acta Neurochir Suppl (Wien). 1990;49:1–64.

  2. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.

    Article  CAS  PubMed  Google Scholar 

  3. Asgeirsson B, Grande PO, Nordstrom CH. A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med. 1994;20:260–7.

    Article  CAS  PubMed  Google Scholar 

  4. Grande PO. The “Lund Concept” for the treatment of severe head trauma–physiological principles and clinical application. Intensive Care Med. 2006;32:1475–84.

    Article  PubMed  Google Scholar 

  5. Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev. 1994;74:163–219.

    CAS  PubMed  Google Scholar 

  6. FitzGerald GA, Friedman LA, Miyamori I, O’Grady J, Lewis PJ. A double blind placebo controlled crossover study of prostacyclin in man. Life Sci. 1979;25:665–72.

    Article  CAS  PubMed  Google Scholar 

  7. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263:663–5.

    Article  CAS  PubMed  Google Scholar 

  8. Moncada S, Higgs EA, Vane JR. Human arterial and venous tissues generate prostacyclin (prostaglandin x), a potent inhibitor of platelet aggregation. Lancet. 1977;1:18–20.

    Article  CAS  PubMed  Google Scholar 

  9. Moncada S, Vane JR. The role of prostacyclin in vascular tissue. Fed Proc. 1979;38:66–71.

    CAS  PubMed  Google Scholar 

  10. Moncada S, Vane JR. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. N Engl J Med. 1979;300:1142–7.

    Article  CAS  PubMed  Google Scholar 

  11. Lundblad C, Grande PO, Bentzer P. Increased cortical cell loss and prolonged hemodynamic depression after traumatic brain injury in mice lacking the IP receptor for prostacyclin. J Cereb Blood Flow Metab. 2008;28:367–76.

    Article  CAS  PubMed  Google Scholar 

  12. Grande PO, Moller AD, Nordstrom CH, Ungerstedt U. Low-dose prostacyclin in treatment of severe brain trauma evaluated with microdialysis and jugular bulb oxygen measurements. Acta Anaesthesiol Scand. 2000;44:886–94.

    Article  CAS  PubMed  Google Scholar 

  13. Olivecrona M, Rodling-Wahlstrom M, Naredi S, Koskinen LO. Prostacyclin treatment in severe traumatic brain injury: a microdialysis and outcome study. J Neurotrauma. 2009;26:1251–62.

    Article  PubMed  Google Scholar 

  14. Aries MJ, Czosnyka M, Budohoski KP, et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63.

    Article  PubMed  Google Scholar 

  15. Howells T, Elf K, Jones PA, et al. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg. 2005;102:311–7.

    Article  PubMed  Google Scholar 

  16. Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.

    Article  PubMed  Google Scholar 

  17. Lang EW, Chesnut RM. A bedside method for investigating the integrity and critical thresholds of cerebral pressure autoregulation in severe traumatic brain injury patients. Br J Neurosurg. 2000;14:117–26.

    Article  CAS  PubMed  Google Scholar 

  18. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75:813–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Olivecrona M, Rodling-Wahlstrom M, Naredi S, Koskinen LO. Effective ICP reduction by decompressive craniectomy in patients with severe traumatic brain injury treated by an ICP-targeted therapy. J Neurotrauma. 2007;24:927–35.

    Article  PubMed  Google Scholar 

  20. Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J Neurotrauma. 1998;15:573–85.

    Article  CAS  PubMed  Google Scholar 

  21. Moncada S, Vane JR. Prostacyclin and its clinical applications. Ann Clin Res. 1984;16:241–52.

    CAS  PubMed  Google Scholar 

  22. Brandt L, Ljunggren B, Andersson KE, Hindfelt B, Uski T. Effects of indomethacin and prostacyclin on isolated human pial arteries contracted by CSF from patients with aneurysmal SAH. J Neurosurg. 1981;55:877–83.

    Article  CAS  PubMed  Google Scholar 

  23. Brandt L, Ljunggren B, Andersson KE, Hindfelt B, Uski T. Prostaglandin metabolism and prostacyclin in cerebral vasospasm. Gen Pharmacol. 1983;14:141–3.

    Article  CAS  PubMed  Google Scholar 

  24. Koskinen LO, Olivecrona M, Rodling-Wahlstrom M, Naredi S. Prostacyclin treatment normalises the MCA flow velocity in nimodipine-resistant cerebral vasospasm after aneurysmal subarachnoid haemorrhage: a pilot study. Acta Neurochir (Wien). 2009;151:595–9; discussion 599.

  25. Wahlström M, Olivecrona M, Ahlm C, et al. Effects of prostacyclin on the early inflammatory response in patients with traumatic brain injury: a randomised clinical study. SpringerPlus. 2014;3:98.

  26. Kurihara J, Sahara T, Kato H. Protective effect of beraprost sodium, a new chemically stable prostacyclin analogue, against the deterioration of baroreceptor reflex following transient global cerebral ischaemia in dogs. Br J Pharmacol. 1990;99:91–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. de Souza M, Bouskela E. Arteriolar diameter and spontaneous vasomotion: importance of potassium channels and nitric oxide. Microvasc Res. 2013;90:121–7.

    Article  PubMed  Google Scholar 

  28. Rosenkranz AC, Rauch BH, Doller A, et al. Regulation of human vascular protease-activated receptor-3 through mRNA stabilization and the transcription factor nuclear factor of activated T cells (NFAT). Mol Pharmacol. 2011;80:337–44.

    Article  CAS  PubMed  Google Scholar 

  29. Pickard JD. Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism. J Cereb Blood Flow Metab. 1981;1:361–84.

    Article  CAS  PubMed  Google Scholar 

  30. Sviri GE, Aaslid R, Douville CM, Moore A, Newell DW. Time course for autoregulation recovery following severe traumatic brain injury. J Neurosurg. 2009;111:695–700.

    Article  PubMed  Google Scholar 

  31. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7; discussion 17–9.

  32. Jaeger M, Schuhmann MU, Soehle M, Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med. 2006;34:1783–8.

    Article  PubMed  Google Scholar 

  33. Steiner LA, Pfister D, Strebel SP, Radolovich D, Smielewski P, Czosnyka M. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10:122–8.

    Article  PubMed  Google Scholar 

  34. Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2.

    Article  PubMed  Google Scholar 

  35. Sanchez-Porras R, Santos E, Czosnyka M, Zheng Z, Unterberg AW, Sakowitz OW. ‘Long’ pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir (Wien). 2012;154:1575–81.

    Article  Google Scholar 

  36. Kirkness CJ, Mitchell PH, Burr RL, Newell DW. Cerebral autoregulation and outcome in acute brain injury. Biol Res Nurs. 2001;2:175–85.

    Article  CAS  PubMed  Google Scholar 

  37. Shahsavari S, McKelvey T, Ritzen CE, Rydenhag B. Cerebrovascular mechanical properties and slow waves of intracranial pressure in TBI patients. IEEE Trans Biomed Eng. 2011;58:2072–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Department of Clinical Neuroscience University Hospital Research Found, Tore Nilsson Found, Kempe Found, Capio Research Found and Umeå University financially supported this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars-Owe D. Koskinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koskinen, LO.D., Eklund, A., Sundström, N. et al. Prostacyclin Influences the Pressure Reactivity in Patients with Severe Traumatic Brain Injury Treated with an ICP-Targeted Therapy. Neurocrit Care 22, 26–33 (2015). https://doi.org/10.1007/s12028-014-0030-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-014-0030-8

Keywords

Navigation