Skip to main content

Advertisement

Log in

Age estimation from iliac auricular surface using Bayesian inference and principal component analysis: a CT-based study in an Indian population

  • Original Article
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Age estimation constitutes one of the pillars of human identification. The auricular surface of the ilium presents as a durable and robust structure within the human skeletal framework, capable of enabling accurate age estimation in older adults. Amongst different documented auricular age estimation methods, the Buckberry-Chamberlain method offers greater objectivity through its component-based approach. The present study aimed to test the applicability of the Buckberry-Chamberlain method in an Indian population through a CT-based examination of the auricular surface. CT scans of 435 participants undergoing CT examinations following the advice of their treating physicians were scrutinized for different age-related auricular changes. Three of the five morphological features described by Buckberry-Chamberlain could be appreciated on CT scans, and thus further statistical analysis was restricted to these features. Transition analysis coupled with Bayesian inference was undertaken individually for each feature to enable age estimation from individual features, while circumventing age mimicry. A Bayesian analysis of individual features yielded highest accuracy percentages (98.64%) and error rates (12.99 years) with macroporosity. Transverse organization and apical changes yielded accuracy percentages of 91.67% and 94.84%, respectively, with inaccuracy computations of 10.18 years and 11.74 years, respectively. Summary age models, i.e. multivariate age estimation models, derived by taking this differential accuracy and inaccuracy into consideration yielded a reduced inaccuracy value of 8.52 years. While Bayesian analysis undertaken within the present study enables age estimation from individual morphological features, summary age models appropriately weigh all appreciable features to yield more accurate and reliable estimates of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Calce SE. A New method to estimate adult age-at-death using the acetabulum. Am J Phys Anthropol. 2012;148(1):11–23. https://doi.org/10.1002/ajpa.22026.

    Article  PubMed  Google Scholar 

  2. Falys CG, Schutkowski H, Weston DA. Auricular surface aging: worse than expected? A test of the revised method on a documented historic skeletal assemblage. Am J Phys Anthropol. 2006;130(4):508–13. https://doi.org/10.1002/ajpa.20382.

    Article  PubMed  Google Scholar 

  3. Latham KE, Finnegan JM, Rhine S. Age estimation of the human skeleton [Internet]. Springfield, Ill.: Charles C. Thomas Publisher; 2010 [Accessed 16 Sep 2021]. Available from: http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=592401.

  4. De Tobel J, Fieuws S, Hillewig E, Phlypo I, van Wijk M, de Haas MB, et al. Multi-factorial age estimation: a Bayesian approach combining dental and skeletal magnetic resonance imaging. Forensic Sci Int. 2020; 306:110054. https://doi.org/10.1016/j.forsciint.2019.110054.

  5. Lovejoy CO, Meindl RS, Mensforth RP, Barton TJ. Multifactorial determination of skeletal age at death: a method and blind tests of its accuracy. Am J Phys Anthropol. 1985;68(1):1–14. https://doi.org/10.1002/ajpa.1330680102.

    Article  CAS  PubMed  Google Scholar 

  6. Miranker M. A Comparison of Different Age Estimation Methods of the Adult Pelvis. J Forensic Sci. 2016;61(5):1173–9. https://doi.org/10.1111/1556-4029.13130.

    Article  PubMed  Google Scholar 

  7. Moraitis K, Zorba E, Eliopoulos C, Fox SC. A test of the revised auricular surface aging method on a modern European population. J Forensic Sci. 2014;59(1):188–94. https://doi.org/10.1111/1556-4029.12303.

    Article  PubMed  Google Scholar 

  8. Barrier P, Dedouit F, Braga J, Joffre F, Rougé D, Rousseau H, et al. Age at death estimation using multislice computed tomography reconstructions of the posterior pelvis. J Forensic Sci. 2009;54(4):773–8. https://doi.org/10.1111/j.1556-4029.2009.01074.x.

    Article  PubMed  Google Scholar 

  9. Buckberry JL, Chamberlain AT. Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol. 2002;119(3):231–9. https://doi.org/10.1002/ajpa.10130.

    Article  CAS  PubMed  Google Scholar 

  10. Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP. Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol. 1985;68(1):15–28. https://doi.org/10.1002/ajpa.1330680103.

    Article  CAS  PubMed  Google Scholar 

  11. Osborne DL, Simmons TL, Nawrocki SP. Reconsidering the auricular surface as an indicator of age at death. J Forensic Sci. 2004;49(5):1–7.

    Article  Google Scholar 

  12. Igarashi Y, Uesu K, Wakebe T, Kanazawa E. New method for estimation of adult skeletal age at death from the morphology of the auricular surface of the ilium. Am J Phys Anthropol. 2005;128(2):324–39. https://doi.org/10.1002/ajpa.20081.

    Article  PubMed  Google Scholar 

  13. Hailey KJ. A comparative evaluation of auricular surface aging methods using the William M. Bass donated skeletal collection. Knoxville: The University of Tennessee; 2015.

    Google Scholar 

  14. Hens SM, Belcastro MG. Auricular surface aging: a blind test of the revised method on historic Italians from Sardinia. Forensic Sci Int. 2012;214(1–3):209.e1-5. https://doi.org/10.1016/j.forsciint.2011.07.043.

    Article  PubMed  Google Scholar 

  15. Merritt CE. Testing the accuracy of adult skeletal age estimation methods: original methods versus revised and newer methods. vis-à-vis: Explorations in Anthropology. 2013;12(1):102–119.

  16. Mulhern DM, Jones EB. Test of revised method of age estimation from the auricular surface of the ilium. Am J Phys Anthropol. 2005;126(1):61–5. https://doi.org/10.1002/ajpa.10410.

    Article  PubMed  Google Scholar 

  17. Xanthopoulou P, Valakos E, Youlatos D, Nikita E. Assessing the accuracy of cranial and pelvic ageing methods on human skeletal remains from a modern Greek assemblage. Forensic Sci Int. 2018;286:266.e1-266.e8. https://doi.org/10.1016/j.forsciint.2018.03.005.

    Article  PubMed  Google Scholar 

  18. Flanaghan TP. Age estimation of the auricular surface of the ilium : a comparison between physical examination and photographic evidence. Sydney: Western Sydney University; 2019.

    Google Scholar 

  19. Pattamapaspong N, Kanthawang T, Singsuwan P, Sansiri W, Prasitwattanaseree S, Mahakkanukrauh P. Efficacy of three-dimensional cinematic rendering computed tomography images in visualizing features related to age estimation in pelvic bones. Forensic Sci Int. 2019;294:48–56. https://doi.org/10.1016/j.forsciint.2018.10.003.

    Article  PubMed  Google Scholar 

  20. Michopoulou E, Negre P, Nikita E, Kranioti EF. The auricular surface as age indicator in a modern Greek sample: a test of two qualitative methods. Forensic Sci Int. 2017;280:246.e1-246.e7. https://doi.org/10.1016/j.forsciint.2017.08.004.

    Article  PubMed  Google Scholar 

  21. Gocha TP, Ingvoldstad ME, Kolatorowicz A, Cosgriff-Hernandez MTJ, Sciulli PW. Testing the applicability of six macroscopic skeletal aging techniques on a modern Southeast Asian sample. Forensic Sci Int. 2015;249(318):e1-7. https://doi.org/10.1016/j.forsciint.2014.12.015.

    Article  Google Scholar 

  22. Hens SM, Godde K. Auricular surface aging: comparing two methods that assess morphological change in the ilium with Bayesian analyses. J Forensic Sci. 2016;61(Suppl 1):S30-38. https://doi.org/10.1111/1556-4029.12982.

    Article  PubMed  Google Scholar 

  23. Jones M, Gordon G, Brits D. Age estimation accuracies from black South African os coxae. Homo. 2018;69(5):248–58. https://doi.org/10.1016/j.jchb.2018.08.004.

    Article  CAS  PubMed  Google Scholar 

  24. Winburn A. A comparison of pelvic age-estimation methods on two modern Iberian populations: bioarchaeological and forensic implications. New York: New York University; 2008.

    Google Scholar 

  25. Rivera-Sandoval J, Monsalve T, Cattaneo C. A test of four innominate bone age assessment methods in a modern skeletal collection from Medellin. Colombia Forensic Sci Int. 2018;282:232.e1-232.e8. https://doi.org/10.1016/j.forsciint.2017.11.003.

    Article  PubMed  Google Scholar 

  26. Storey R. An elusive paleodemography? A comparison of two methods for estimating the adult age distribution of deaths at late Classic Copan. Honduras Am J Phys Anthropol. 2007;132(1):40–7. https://doi.org/10.1002/ajpa.20502.

    Article  PubMed  Google Scholar 

  27. Nagaoka T, Jirata K. Demographic structure of skeletal populations in historic Japan: a new estimation of adult age-at-death distributions based on the auricular surface of the ilium. J Archaeol Sci. 2008;35(5):1370–7.

    Article  Google Scholar 

  28. Rissech C, Wilson J, Winburn AP, Turbón D, Steadman D. A comparison of three established age estimation methods on an adult Spanish sample. Int J Legal Med. 2012;126(1):145–55.

    Article  PubMed  Google Scholar 

  29. San Millán M, Millán MS, Rissech C, Turbón D. A test of Suchey-Brooks (pubic symphysis) and Buckberry-Chamberlain (auricular surface) methods on an identified Spanish sample: paleodemographic implications. J Archaeol Sci. 2013;40(4):1743–51.

    Article  Google Scholar 

  30. Villa C, Buckberry J, Cattaneo C, Lynnerup N. Technical note: reliability of Suchey-Brooks and Buckberry-Chamberlain methods on 3D visualizations from CT and laser scans. Am J Phys Anthropol. 2013;151(1):158–63.

    Article  PubMed  Google Scholar 

  31. Nikita E, Xanthopoulou P, Kranioti E. An evaluation of Bayesian age estimation using the auricular surface in modern Greek material. Forensic Sci Int. 2018;291:1–11. https://doi.org/10.1016/j.forsciint.2018.07.029.

    Article  PubMed  Google Scholar 

  32. Shedge R, Kanchan T, Garg PK, Dixit SG, Warrier V, Khera P, et al. Computed tomographic analysis of medial clavicular epiphyseal fusion for age estimation in Indian population. Leg Med (Tokyo). 2020;46:101735. https://doi.org/10.1016/j.legalmed.2020.101735.

  33. Warrier V, Kanchan T, Garg PK, Dixit SG, Krishan K, Shedge R. CT-based evaluation of the acetabulum for age estimation in an Indian population. Int J Legal Med. 2022;136(3):785–95. https://doi.org/10.1007/s00414-021-02757-y.

    Article  PubMed  Google Scholar 

  34. Warrier V, Shedge R, Garg PK, Dixit SG, Krishan K, Kanchan T. Computed tomographic evaluation of the acetabulum for age estimation in an Indian population using principal component analysis and regression models. Int J Legal Med. 2022. https://doi.org/10.1007/s00414-022-02856-4.

    Article  PubMed  Google Scholar 

  35. Warrier V, Shedge R, Garg PK, Dixit SG, Krishan K, Kanchan T. Applicability of the Calce method for age estimation in an Indian population: a clinical CT-based study. Leg Med. 2022;59:102113. https://doi.org/10.1016/j.legalmed.2022.102113.

  36. Wink AE. Pubic symphyseal age estimation from three-dimensional reconstructions of pelvic CT scans of live individuals. J Forensic Sci. 2014;59(3):696–702. https://doi.org/10.1111/1556-4029.12369.

    Article  PubMed  Google Scholar 

  37. Lottering N, Alston-Knox CL, MacGregor DM, Izatt MT, Grant CA, Adam CJ, et al. Apophyseal ossification of the iliac crest in forensic age estimation: computed tomography standards for modern Australian subadults. J Forensic Sci. 2017;62(2):292–307. https://doi.org/10.1111/1556-4029.13285.

    Article  PubMed  Google Scholar 

  38. Hall F, Forbes S, Rowbotham S, Blau S. Using PMCT of individuals of known age to test the Suchey-Brooks method of aging in Victoria. Australia J Forensic Sci. 2019;64(6):1782–7. https://doi.org/10.1111/1556-4029.14086.

    Article  PubMed  Google Scholar 

  39. Fliss B, Luethi M, Fuernstahl P, Christensen AM, Sibold K, Thali M, et al. CT-based sex estimation on human femora using statistical shape modeling. Am J Phys Anthropol. 2019;169(2):279–86. https://doi.org/10.1002/ajpa.23828.

    Article  PubMed  Google Scholar 

  40. Tunis TS, Sarig R, Cohen H, Medlej B, Peled N, May H. Sex estimation using computed tomography of the mandible. Int J Legal Med. 2017;131(6):1691–700. https://doi.org/10.1007/s00414-017-1554-1.

    Article  PubMed  Google Scholar 

  41. 3D Slicer image computing platform [Internet]. 3D Slicer. [Accessed 27 Jan 2022]. Available from: https://slicer.org/.

  42. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Konigsberg LW, Frankenberg SR. Bayes in biological anthropology. Am J Phys Anthropol. 2013;152(S57):153–84. https://doi.org/10.1002/ajpa.22397.

    Article  PubMed  Google Scholar 

  44. Lyle W. Konigsberg’s webpage [Internet]. [Accessed 26 Apr 2022]. Available from: http://faculty.las.illinois.edu/lylek/.

  45. Getz SM. The use of transition analysis in skeletal age estimation. WIREs Forensic Science. 2020;2(6):e1378. https://doi.org/10.1002/wfs2.1378.

  46. Nikita E, Nikitas P. Skeletal age-at-death estimation: Bayesian versus regression methods. Forensic Sci Int. 2019;297:56–64. https://doi.org/10.1016/j.forsciint.2018.07.029.

    Article  PubMed  Google Scholar 

  47. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276–82.

    Article  PubMed  Google Scholar 

  48. Baccino E, Sinfield L, Colomb S, Baum TP, Martrille L. Technical note: the two step procedure (TSP) for the determination of age at death of adult human remains in forensic cases. Forensic Sci Int. 2014;244:247–51. https://doi.org/10.1016/j.forsciint.2014.09.005.

    Article  PubMed  Google Scholar 

  49. Konigsberg LW, Herrmann NP, Wescott DJ, Kimmerle EH. Estimation and evidence in forensic anthropology: age-at-death. J Forensic Sci. 2008;53(3):541–57.

    Article  PubMed  Google Scholar 

  50. Boldsen JL, Milner GR, Konigsberg LW, Wood JW. Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW, Hoppa RD, Vaupel JW, editors. Paleodemography. Cambridge University Press; 2002. p. 73–106.

    Chapter  Google Scholar 

  51. Kimmerle EH, Konigsberg LW, Jantz RL, Baraybar JP. Analysis of age-at-death estimation through the use of pubic symphyseal data. J Forensic Sci. 2008;53(3):558–68.

    Article  PubMed  Google Scholar 

  52. Konigsberg LW, Frankenberg SR. Deconstructing death in paleodemography. Am J Phys Anthropol. 2002;117(4):297–309. https://doi.org/10.1002/ajpa.10039.

    Article  PubMed  Google Scholar 

  53. Lucy D, Aykroyd RG, Pollard AM, Solheim T. A Bayesian approach to adult human age estimation from dental observations by Johanson’s age changes. J Forensic Sci. 1996;41(2):189–94.

    Article  CAS  PubMed  Google Scholar 

  54. Langley-Shirley N, Jantz RL. A Bayesian approach to age estimation in modern Americans from the clavicle. J Forensic Sci. 2010;55(3):571–83. https://doi.org/10.1111/j.1556-4029.2010.01089.x.

    Article  PubMed  Google Scholar 

  55. Bedford ME, Russell KF, Lovejoy CO, Meindl RS, Simpson SW, Stuart-Macadam PL. Test of the multifactorial aging method using skeletons with known ages-at-death from the Grant Collection. Am J Phys Anthropol. 1993;91(3):287–97. https://doi.org/10.1002/ajpa.1330910304.

    Article  CAS  PubMed  Google Scholar 

  56. Sashin D. A critical analysis of the anatomy and the pathologic changes of the sacro-iliac joints. J Bone Jt Surg. 1930;12(4):891–910.

    Google Scholar 

  57. Garvin HM, Passalacqua NV. Current practices by forensic anthropologists in adult skeletal age estimation. J Forensic Sci. 2012;57(2):427–33. https://doi.org/10.1111/j.1556-4029.2011.01979.x.

    Article  PubMed  Google Scholar 

  58. Mukaka M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Applied statistics for the behavioral sciences (eBook, 2003) [WorldCat.org] [Internet]. [Accessed 2 Feb 2022]. Available from: https://www.worldcat.org/title/applied-statistics-for-the-behavioral-sciences/oclc/643936092.

  60. Rissech C, Estabrook G, Cunha E, Malgosa A. Using the acetabulum to estimate age at death of adult males. J Forensic Sci. 2006;51:213–29. https://doi.org/10.1111/j.1556-4029.2006.00060.x.

    Article  PubMed  Google Scholar 

  61. Rougé-Maillart C, Vielle B, Jousset N, Chappard D, Telmon N, Cunha E. Development of a method to estimate skeletal age at death in adults using the acetabulum and the auricular surface on a Portuguese population. Forensic Sci Int. 2009;188(1–3):91–5. https://doi.org/10.1016/j.forsciint.2009.03.019.

    Article  PubMed  Google Scholar 

  62. Sullivan S, Flavel A, Franklin D. Age estimation in a sub-adult Western Australian population based on the analysis of the pelvic girdle and proximal femur. Forensic Sci Int. 2017;281:185.e1-185.e10. https://doi.org/10.1016/j.forsciint.2017.10.010.

    Article  PubMed  Google Scholar 

  63. Bailey C. Age-at-death Estimation: Accuracy and Reliability of Age-Reporting Strategies. Knoxville: The University of Tennessee; 2018. p. 2015.

    Google Scholar 

  64. Bascou A, Dubourg O, Telmon N, Dedouit F, Saint-Martin P, Savall F. Age estimation based on computed tomography exploration: a combined method. Int J Legal Med. 2021;135(6):2447–55. https://doi.org/10.1007/s00414-021-02666-0.

    Article  PubMed  Google Scholar 

  65. Cloven JM. Validation study of the proposed seventh phase of the Suchey-Brooks age estimation method for the pubic symphysis. 2015 [Accessed 18 Apr 2022]; Available from: https://open.bu.edu/handle/2144/15624.

  66. Fleischman JM. A comparative assessment of the Chen et al. and Suchey-Brooks pubic aging methods on a North American sample. J Forensic Sci. 2013; 58(2):311–23. https://doi.org/10.1111/1556-4029.12061.

  67. Hens SM, Godde K. A Bayesian approach to estimating age from the auricular surface of the ilium in modern American skeletal samples. Forensic Sci Int. 2022;2(4):682–95. https://doi.org/10.3390/forensicsci2040051.

    Article  Google Scholar 

  68. Godde K, Hens SM. Age-at-death estimation in an Italian historical sample: a test of the Suchey-Brooks and transition analysis methods. Am J Phys Anthropol. 2012;149(2):259–65. https://doi.org/10.1002/ajpa.22126.

    Article  PubMed  Google Scholar 

  69. Carew R, Viner M, Conlogue G, Grant N, Beckett S. Accuracy of computed radiography in osteometry: a comparison of digital imaging techniques and the effect of magnification. J Forensic Radiol Imag. 2019;19:100348. https://doi.org/10.1016/j.jofri.2019.100348.

  70. Ekizoglu O, Inci E, Erdil I, Hocaoglu E, Bilgili MG, Kazimoglu C, et al. Computed tomography evaluation of the iliac crest apophysis: age estimation in living individuals. Int J Legal Med. 2016;130(4):1101–7. https://doi.org/10.1007/s00414-016-1345-0.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research article is a part of an ongoing doctoral research being conducted by the principal author in the Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, India. The principal author is grateful to the University Grants Commission, New Delhi for awarding the research fellowship (UGC-JRF) for pursuing PhD. The authors are also thankful to the individuals who participated in this study, and to the authorities of the institution for allowing us to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Warrier.

Ethics declarations

Ethical approval

Approval was obtained from the Institutional Ethics Committee (Letter no. AIIMS/IEC/2019–20/1007) prior to commencement of the study.

Informed consent

All participants were informed about parameters of the study and CT images of consenting individuals were collected.

Research involving human participants and/or animals

Human participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warrier, V., Shedge, R., Garg, P.K. et al. Age estimation from iliac auricular surface using Bayesian inference and principal component analysis: a CT-based study in an Indian population. Forensic Sci Med Pathol (2023). https://doi.org/10.1007/s12024-023-00637-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12024-023-00637-y

Keywords

Navigation