Skip to main content

Advertisement

Log in

Analyzing Genetic Differences Between Sporadic Primary and Secondary/Tertiary Hyperparathyroidism by Targeted Next-Generation Panel Sequencing

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Secondary hyperparathyroidism (SHPT) is characterized by excessive serum parathyroid hormone levels in response to decreasing kidney function, and tertiary hyperparathyroidism (THPT) is often the result of a long-standing SHPT. To date, several genes have been associated with the pathogenesis of primary hyperparathyroidism (PHPT). However, the molecular genetic mechanisms of uremic hyperparathyroidism (HPT) remain uncharacterized. To elucidate the differences in genetic alterations between PHPT and SHPT/THPT, the targeted next-generation sequencing of genes associated with HPT was performed using DNA extracted from parathyroid tissues. As a result, 26 variants in 19 PHPT or SHPT/THPT appeared as candidate pathogenic mutations, which corresponded to 9 (35%) nonsense, 8 (31%) frameshift, 6 (23%) missense, and 3 (11%) splice site mutations. The MEN1 (23%, 6/26), ASXL3 (15%, 4/26), EZH2 (12%, 3/26), and MTOR (8%, 2/26) genes were frequently mutated. Sixteen of 25 patients with PHPT (64%) had one or more mutations, whereas 3 (21%) of 21 patients with SHPT/THPT had only 1 mutation (p = 0.001). Sixteen of 28 patients (57%) with parathyroid adenoma (PA) had one or more mutations, whereas 3 of 18 patients (17%) with parathyroid hyperplasia (PH) had just one mutation (p = 0.003). Known driver mutations associated with parathyroid tumorigenesis such as CCND1/PRAD1, CDC73/HRPT2, and MEN1 were identified only in PA (44%, 7/16 with mutations). Our results suggest that molecular genetic abnormalities in SHPT/THPT are distinct from those in PHPT. These findings may help in analyzing the molecular pathogenesis underlying uremic HPT development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cunningham J, Locatelli F, Rodriguez M (2011) Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol 6:913-921. https://doi.org/10.2215/cjn.06040710

    CAS  PubMed  Google Scholar 

  2. Martin KJ, Gonzalez EA (2007) Metabolic bone disease in chronic kidney disease. Journal of the American Society of Nephrology : JASN 18:875-885. https://doi.org/10.1681/asn.2006070771

    CAS  PubMed  Google Scholar 

  3. van der Plas WY, Noltes ME, van Ginhoven TM, Kruijff S (2020) Secondary and tertiary hyperparathyroidism: a narrative review. Scandinavian journal of surgery : SJS : official organ for the Finnish Surgical Society and the Scandinavian Surgical Society 109:271-278. https://doi.org/10.1177/1457496919866015

    Google Scholar 

  4. Pitt SC, Sippel RS, Chen H (2009) Secondary and tertiary hyperparathyroidism, state of the art surgical management. The Surgical clinics of North America 89:1227-1239. https://doi.org/10.1016/j.suc.2009.06.011

    PubMed  PubMed Central  Google Scholar 

  5. Lauter KB, Arnold A (2008) Mutational analysis of CDKN1B, a candidate tumor-suppressor gene, in refractory secondary/tertiary hyperparathyroidism. Kidney Int 73:1137-1140. https://doi.org/10.1038/ki.2008.28

    CAS  PubMed  Google Scholar 

  6. Marcocci C, Cetani F (2011) Clinical practice. Primary hyperparathyroidism. The New England journal of medicine 365:2389-2397. https://doi.org/10.1056/NEJMcp1106636

    CAS  PubMed  Google Scholar 

  7. Kebebew E, Clark OH (1998) Parathyroid adenoma, hyperplasia, and carcinoma: localization, technical details of primary neck exploration, and treatment of hypercalcemic crisis. Surgical oncology clinics of North America 7:721-748

    CAS  PubMed  Google Scholar 

  8. Segiet OA, Deska M, Michalski M, Gawrychowski J, Wojnicz R (2015) Molecular profiling in primary hyperparathyroidism. Head & neck 37:299-307. https://doi.org/10.1002/hed.23656

    Google Scholar 

  9. Krebs LJ, Shattuck TM, Arnold A (2005) HRPT2 mutational analysis of typical sporadic parathyroid adenomas. The Journal of clinical endocrinology and metabolism 90:5015-5017. https://doi.org/10.1210/jc.2005-0717

    CAS  PubMed  Google Scholar 

  10. Pardi E, Marcocci C, Borsari S, Saponaro F, Torregrossa L, Tancredi M, Raspini B, Basolo F, Cetani F (2013) Aryl hydrocarbon receptor interacting protein (AIP) mutations occur rarely in sporadic parathyroid adenomas. The Journal of clinical endocrinology and metabolism 98:2800-2810. https://doi.org/10.1210/jc.2012-4029

    CAS  PubMed  Google Scholar 

  11. Guarnieri V, Canaff L, Yun FH, Scillitani A, Battista C, Muscarella LA, Wong BY, Notarangelo A, D’Agruma L, Sacco M, Cole DE, Hendy GN (2010) Calcium-sensing receptor (CASR) mutations in hypercalcemic states: studies from a single endocrine clinic over three years. The Journal of clinical endocrinology and metabolism 95:1819-1829. https://doi.org/10.1210/jc.2008-2430

    CAS  PubMed  Google Scholar 

  12. Costa-Guda J, Soong CP, Parekh VI, Agarwal SK, Arnold A (2013) Germline and somatic mutations in cyclin-dependent kinase inhibitor genes CDKN1A, CDKN2B, and CDKN2C in sporadic parathyroid adenomas. Hormones & cancer 4:301-307. https://doi.org/10.1007/s12672-013-0147-9

    CAS  Google Scholar 

  13. Björklund P, Akerström G, Westin G (2007) Accumulation of nonphosphorylated beta-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. The Journal of clinical endocrinology and metabolism 92:338-344. https://doi.org/10.1210/jc.2006-1197

    PubMed  Google Scholar 

  14. Cromer MK, Starker LF, Choi M, Udelsman R, Nelson-Williams C, Lifton RP, Carling T (2012) Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. The Journal of clinical endocrinology and metabolism 97:E1774-1781. https://doi.org/10.1210/jc.2012-1743

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Newey PJ, Nesbit MA, Rimmer AJ, Attar M, Head RT, Christie PT, Gorvin CM, Stechman M, Gregory L, Mihai R, Sadler G, McVean G, Buck D, Thakker RV (2012) Whole-exome sequencing studies of nonhereditary (sporadic) parathyroid adenomas. The Journal of clinical endocrinology and metabolism 97:E1995-2005. https://doi.org/10.1210/jc.2012-2303

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Costa-Guda J, Arnold A (2014) Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid tumors. Molecular and cellular endocrinology 386:46-54. https://doi.org/10.1016/j.mce.2013.09.005

    CAS  PubMed  Google Scholar 

  17. Juhlin CC, Erickson LA (2020) Genomics and epigenomics in parathyroid neoplasia: from bench to surgical pathology practice. Endocr Pathol. https://doi.org/10.1007/s12022-020-09656-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mizamtsidi M, Nastos C, Mastorakos G, Dina R, Vassiliou I, Gazouli M, Palazzo F (2018) Diagnosis, management, histology and genetics of sporadic primary hyperparathyroidism: old knowledge with new tricks. Endocr Connect 7:R56-r68. https://doi.org/10.1530/ec-17-0283

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Westin G (2016) Molecular genetics and epigenetics of nonfamilial (sporadic) parathyroid tumours. Journal of internal medicine 280:551-558. https://doi.org/10.1111/joim.12458

    CAS  PubMed  Google Scholar 

  20. Cinque L, Pugliese F, Salcuni AS, Scillitani A, Guarnieri V (2018) Molecular pathogenesis of parathyroid tumours. Best practice & research Clinical endocrinology & metabolism 32:891-908. https://doi.org/10.1016/j.beem.2018.11.001

    CAS  Google Scholar 

  21. Wei Z, Sun B, Wang ZP, He JW, Fu WZ, Fan YB, Zhang ZL (2018) Whole-exome sequencing identifies novel recurrent somatic mutations in sporadic parathyroid adenomas. Endocrinology 159:3061-3068. https://doi.org/10.1210/en.2018-00246

    CAS  PubMed  Google Scholar 

  22. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou AM, Vnencak-Jones CL, Wolff DJ, Younes A, Nikiforova MN (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. The Journal of molecular diagnostics : JMD 19:4-23. https://doi.org/10.1016/j.jmoldx.2016.10.002

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:110-121. https://doi.org/10.1101/gr.097857.109

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tavtigian SV, Greenblatt MS, Lesueur F, Byrnes GB (2008) In silico analysis of missense substitutions using sequence-alignment based methods. Hum Mutat 29:1327-1336. https://doi.org/10.1002/humu.20892

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Falchetti A, Bale AE, Amorosi A, Bordi C, Cicchi P, Bandini S, Marx SJ, Brandi ML (1993) Progression of uremic hyperparathyroidism involves allelic loss on chromosome 11. The Journal of clinical endocrinology and metabolism 76:139-144. https://doi.org/10.1210/jcem.76.1.8421078

    CAS  PubMed  Google Scholar 

  26. Inagaki C, Dousseau M, Pacher N, Sarfati E, Drüeke TB, Gogusev J (1998) Structural analysis of gene marker loci on chromosomes 10 and 11 in primary and secondary uraemic hyperparathyroidism. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 13:350-357. https://doi.org/10.1093/oxfordjournals.ndt.a027829

    CAS  Google Scholar 

  27. Imanishi Y, Tahara H, Palanisamy N, Spitalny S, Salusky IB, Goodman W, Brandi ML, Drüeke TB, Sarfati E, Ureña P, Chaganti RS, Arnold A (2002) Clonal chromosomal defects in the molecular pathogenesis of refractory hyperparathyroidism of uremia. Journal of the American Society of Nephrology : JASN 13:1490-1498. https://doi.org/10.1097/01.asn.0000018148.50109.c0

    CAS  PubMed  Google Scholar 

  28. Westin G, Bjorklund P, Akerstrom G (2009) Molecular genetics of parathyroid disease. World journal of surgery 33:2224-2233. https://doi.org/10.1007/s00268-009-0022-6

    PubMed  Google Scholar 

  29. Lemos MC, Thakker RV (2008) Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29:22-32. https://doi.org/10.1002/humu.20605

    CAS  PubMed  Google Scholar 

  30. Uchino S, Noguchi S, Sato M, Yamashita H, Yamashita H, Watanabe S, Murakami T, Toda M, Ohshima A, Futata T, Mizukoshi T, Koike E, Takatsu K, Terao K, Wakiya S, Nagatomo M, Adachi M (2000) Screening of the Men1 gene and discovery of germ-line and somatic mutations in apparently sporadic parathyroid tumors. Cancer Res 60:5553-5557

    CAS  PubMed  Google Scholar 

  31. Cetani F, Pardi E, Borsari S, Marcocci C (2011) Molecular pathogenesis of primary hyperparathyroidism. J Endocrinol Invest 34:35-39

    CAS  PubMed  Google Scholar 

  32. Skandarajah A, Barlier A, Morlet-Barlat N, Sebag F, Enjalbert A, Conte-Devolx B, Henry JF (2010) Should routine analysis of the MEN1 gene be performed in all patients with primary hyperparathyroidism under 40 years of age? World journal of surgery 34:1294-1298. https://doi.org/10.1007/s00268-009-0388-5

    PubMed  Google Scholar 

  33. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG (2004) Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145:5439-5447. https://doi.org/10.1210/en.2004-0959

    CAS  PubMed  Google Scholar 

  34. Zhao L, Sun LH, Liu DM, He XY, Tao B, Ning G, Liu JM, Zhao HY (2014) Copy number variation in CCND1 gene is implicated in the pathogenesis of sporadic parathyroid carcinoma. World journal of surgery 38:1730-1737. https://doi.org/10.1007/s00268-014-2455-9

    PubMed  Google Scholar 

  35. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC (2000) Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proceedings of the National Academy of Sciences of the United States of America 97:4262-4266. https://doi.org/10.1073/pnas.060025397

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gill AJ, Lim G, Cheung VKY, Andrici J, Perry-Keene JL, Paik J, Sioson L, Clarkson A, Sheen A, Luxford C, Elston MS, Meyer-Rochow GY, Nano MT, Kruijff S, Engelsman AF, Sywak M, Sidhu SB, Delbridge LW, Robinson BG, Marsh DJ, Toon CW, Chou A, Clifton-Bligh RJ (2019) Parafibromin-deficient (HPT-JT type, CDC73 mutated) parathyroid tumors demonstrate distinctive morphologic features. Am J Surg Pathol 43:35-46. https://doi.org/10.1097/pas.0000000000001017

    PubMed  Google Scholar 

  37. Turchini J, Gill AJ (2020) Hereditary parathyroid disease: sometimes pathologists do not know what they are missing. Endocr Pathol 31:218-230. https://doi.org/10.1007/s12022-020-09631-4

    PubMed  Google Scholar 

  38. Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J, Simonds WF, Gillanders EM, Kennedy AM, Chen JD, Agarwal SK, Sood R, Jones MP, Moses TY, Haven C, Petillo D, Leotlela PD, Harding B, Cameron D, Pannett AA, Hoog A, Heath H, 3rd, James-Newton LA, Robinson B, Zarbo RJ, Cavaco BM, Wassif W, Perrier ND, Rosen IB, Kristoffersson U, Turnpenny PD, Farnebo LO, Besser GM, Jackson CE, Morreau H, Trent JM, Thakker RV, Marx SJ, Teh BT, Larsson C, Hobbs MR (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nature genetics 32:676-680. https://doi.org/10.1038/ng1048

    CAS  PubMed  Google Scholar 

  39. Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H, Teh BT (2003) HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. Journal of medical genetics 40:657-663. https://doi.org/10.1136/jmg.40.9.657

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Katoh M, Katoh M (2004) Identification and characterization of ASXL3 gene in silico. International journal of oncology 24:1617-1622

    CAS  PubMed  Google Scholar 

  41. Micol JB, Abdel-Wahab O (2016) The role of additional sex combs-like proteins in cancer. Cold Spring Harbor perspectives in medicine 6. https://doi.org/10.1101/cshperspect.a026526

  42. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence MS, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansen S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson BE, Janne PA, Miller VA, Pao W, Travis WD, Pass HI, Gabriel SB, Lander ES, Thomas RK, Garraway LA, Getz G, Meyerson M (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150:1107-1120. https://doi.org/10.1016/j.cell.2012.08.029

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Laugesen A, Højfeldt JW, Helin K (2016) Role of the polycomb repressive complex 2 (PRC2) in transcriptional regulation and cancer. Cold Spring Harbor perspectives in medicine 6. https://doi.org/10.1101/cshperspect.a026575

  44. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NC (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature genetics 42:722-726. https://doi.org/10.1038/ng.621

    CAS  PubMed  Google Scholar 

  45. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nature genetics 42:665-667. https://doi.org/10.1038/ng.620

    CAS  PubMed  Google Scholar 

  46. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, Morin RD, Mungall AJ, Meissner B, Boyle M, Marquez VE, Marra MA, Gascoyne RD, Humphries RK, Arrowsmith CH, Morin GB, Aparicio SA (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117:2451-2459. https://doi.org/10.1182/blood-2010-11-321208

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Svedlund J, Barazeghi E, Stålberg P, Hellman P, Åkerström G, Björklund P, Westin G (2014) The histone methyltransferase EZH2, an oncogene common to benign and malignant parathyroid tumors. Endocrine-related cancer 21:231-239. https://doi.org/10.1530/erc-13-0497

    CAS  PubMed  Google Scholar 

  48. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109-113. https://doi.org/10.1038/nature11083

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pandya C, Uzilov AV, Bellizzi J, Lau CY, Moe AS, Strahl M, Hamou W, Newman LC, Fink MY, Antipin Y, Yu W, Stevenson M, Cavaco BM, Teh BT, Thakker RV, Morreau H, Schadt EE, Sebra R, Li SD, Arnold A, Chen R (2017) Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI insight 2:e92061. https://doi.org/10.1172/jci.insight.92061

  50. Geiersbach K, Adey N, Welker N, Elsberry D, Malmberg E, Edwards S, Downs-Kelly E, Salama M, Bronneet M (2016) Digitally guided microdissection aids somatic mutation detection in difficult to dissect tumors. Cancer Genet 209: 42-49. https://doi.org/10.1016/j.cancergen.2015.12.004

    CAS  PubMed  Google Scholar 

  51. Shin H, Sa JK, Bae JS, Koo H, Jin S, Cho HJ, Choi SW, Kyoung JM, Kim JY, Seo YJ, Joung JG, Kim NKD, Son DS, Chung J, Lee T, Kong DS, Choi JW, Seol HJ, Lee JI, Suh YL, Park WY, Nam DH (2020) Clinical targeted next-generation sequencing panels for detection of somatic variants in gliomas. Cancer research and treatment : official journal of Korean Cancer Association 52:41-50. https://doi.org/10.4143/crt.2019.036

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to specially thank Mr. Taekyu Lee from Thermo Fisher Scientific for his contribution in providing technical support with the Ion Torrent NGS experiments.

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (MSIT) (No. 2018R1C1B5045006), and a Clinical Research Institute Grant funded by the Catholic University of Korea Daejeon St. Mary’s Hospital (CMCDJ-P-2020–012).

Author information

Authors and Affiliations

Authors

Contributions

YAH designed the study and wrote the first draft of the manuscript. BKK, JL, and WYS participated in data collection. KCP contributed to sample preparation. WJC, YKC, and SYK interpreted the data. SS and JP performed molecular experiments and interpreted the sequencing data. KYH contributed to mRNA gene expression analysis. YAH and JP reviewed/edited the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Joonhong Park.

Ethics declarations

Ethics Approval

The study protocol was approved by the Institutional Review Board of The Catholic University of Korea (DC19SESI0016). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y.A., Park, K.C., Kim, B.K. et al. Analyzing Genetic Differences Between Sporadic Primary and Secondary/Tertiary Hyperparathyroidism by Targeted Next-Generation Panel Sequencing. Endocr Pathol 32, 501–512 (2021). https://doi.org/10.1007/s12022-021-09686-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-021-09686-x

Keywords

Navigation