Skip to main content

Advertisement

Log in

Neuroendocrine Neoplasms Associated with Germline Pathogenic Variants in the Homologous Recombination Pathway

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Neuroendocrine neoplasms (NENs) have been primarily associated with germline pathogenic variants in genes involved in chromatin remodeling (MEN1), cell cycle control (CDKN1B), PI3K/mTOR signaling (TSC1/2, PTEN) as well as pseudohypoxia (VHL, SDHx). Recent work has implicated various genes involved in DNA repair pathways in the pathophysiology of a subset of pancreatic neuroendocrine neoplasms, including BRCA2, via the homologous recombination pathway (HRD). To date, germline variants in other HRD pathway genes have not been described to contribute to NEN. PALB2, RAD51C, and BARD1 are additional tumor suppressor genes which also mediate repair of double stranded DNA breaks through the HRD pathway and are implicated in hereditary breast (PALB2; BARD1) and ovarian (RAD51C) cancer. Here we report three cases of NEN associated with germline pathogenic variants in PALB2 (pancreatic NEN), RAD51C (thymic NEN), and BARD1 (pancreaticoduodenal NEN) respectively, further linking the DNA repair pathway to NENs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Shah MH, Goldner WS, Halfdanarson TR, Bergsland E, Berlin JD, Halperin D, Chan J, Kulke MH, Benson AB, Blaszkowsky LS, Eads J, Engstrom PF, Fanta P, Giordano T, He J, Heslin MJ, Kalemkerian GP, Kandeel F, Khan SA, Kidwai WZ, Kunz PL, Kuvshinoff BW, Lieu C, Pillarisetty VG, Saltz L, Sosa JA, Strosberg JR, Sussman CA, Trikalinos NA, Uboha NA, Whisenant J, Wong T, Yao JC, Burns JL, Ogba N, Zuccarino-Catania G (2018) NCCN Guidelines Insights: Neuroendocrine and Adrenal Tumors, Version 2.2018. Journal of the National Comprehensive Cancer Network 16:693–702. doi:https://doi.org/10.6004/jnccn.2018.0056

    Article  CAS  PubMed  Google Scholar 

  2. Di Domenico A, Wiedmer T, Marinoni I, Perren A (2017) Genetic and epigenetic drivers of neuroendocrine tumours (NET). Endocr Relat Cancer 24 (9):R315-R334. doi:https://doi.org/10.1530/ERC-17-0012

    Article  PubMed  Google Scholar 

  3. Scarpa A, Chang DK, Nones K, Corbo V, Patch A-M, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, Rusev B, Scardoni M, Antonello D, Barbi S, Sikora KO, Cingarlini S, Vicentini C, McKay S, Quinn MCJ, Bruxner TJC, Christ AN, Harliwong I, Idrisoglu S, McLean S, Nourse C, Nourbakhsh E, Wilson PJ, Anderson MJ, Fink JL, Newell F, Waddell N, Holmes O, Kazakoff SH, Leonard C, Wood S, Xu Q, Nagaraj SH, Amato E, Dalai I, Bersani S, Cataldo I, Dei Tos AP, Capelli P, Davì MV, Landoni L, Malpaga A, Miotto M, Whitehall VLJ, Leggett BA, Harris JL, Harris J, Jones MD, Humphris J, Chantrill LA, Chin V, Nagrial AM, Pajic M, Scarlett CJ, Pinho A, Rooman I, Toon C, Wu J, Pinese M, Cowley M, Barbour A, Mawson A, Humphrey ES, Colvin EK, Chou A, Lovell JA, Jamieson NB, Duthie F, Gingras M-C, Fisher WE, Dagg RA, Lau LMS, Lee M, Pickett HA, Reddel RR, Samra JS, Kench JG, Merrett ND, Epari K, Nguyen NQ, Zeps N, Falconi M, Simbolo M, Butturini G, Van Buren G, Partelli S, Fassan M, Australian Pancreatic Cancer Genome Initiative KK, Khanna KK, Gill AJ, Wheeler DA, Gibbs RA, Musgrove EA, Bassi C, Tortora G, Pederzoli P, Pearson JV, Waddell N, Biankin AV, Grimmond SM (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543:65–71. doi:https://doi.org/10.1038/nature21063

  4. Neychev V, Sadowski SM, Zhu J, Allgaeuer M, Kilian K, Meltzer P, Kebebew E (2016) Neuroendocrine Tumor of the Pancreas as a Manifestation of Cowden Syndrome: A Case Report. J Clin Endocrinol Metab 101 (2):353–358. doi:https://doi.org/10.1210/jc.2015-3684

    Article  CAS  PubMed  Google Scholar 

  5. Karamurzin Y, Zeng Z, Stadler ZK, Zhang L, Ouansafi I, Al-Ahmadie HA, Sempoux C, Saltz LB, Soslow RA, O'Reilly EM, Paty PB, Coit DG, Shia J, Klimstra DS (2012) Unusual DNA mismatch repair-deficient tumors in Lynch syndrome: a report of new cases and review of the literature. Human pathology 43:1677–1687. doi:https://doi.org/10.1016/j.humpath.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  6. Serracant Barrera A, Serra Pla S, Blázquez Maña CM, Salas RC, García Monforte N, Bejarano González N, Romaguera Monzonis A, Andreu Navarro FJ, Bella Cueto MR, Borobia FG (2017) Pancreatic non-functioning neuroendocrine tumor: a new entity genetically related to Lynch syndrome. Journal of gastrointestinal oncology 8:E73-E79. doi:https://doi.org/10.21037/jgo.2017.07.02

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yousef I, Siyam F, Layfield L, Freter C, Sowers JR (2014) Cervical neuroendocrine tumor in a young female with Lynch Syndrome. Neuro endocrinology letters 35:89–94

    PubMed  PubMed Central  Google Scholar 

  8. Niemeijer ND, Papathomas TG, Korpershoek E, de Krijger RR, Oudijk L, Morreau H, Bayley J-P, Hes FJ, Jansen JC, Dinjens WNM, Corssmit EPM (2015) Succinate Dehydrogenase (SDH)-Deficient Pancreatic Neuroendocrine Tumor Expands the SDH-Related Tumor Spectrum. The Journal of clinical endocrinology and metabolism 100:E1386–E1393. doi:https://doi.org/10.1210/jc.2015-2689

    Article  CAS  PubMed  Google Scholar 

  9. Herold N, Wappenschmidt B, Markiefka B, Keupp K, Kröber S, Hahnen E, Schmutzler R, Rhiem K (2018) Non-small cell neuroendocrine carcinoma of the ovary in a BRCA2-germline mutation carrier: A case report and brief review of the literature. Oncology letters 15:4093–4096. doi:https://doi.org/10.3892/ol.2018.7836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan D, Clarke S, Gill AJ, Chantrill L, Samra J, Li BT, Barnes T, Nahar K, Pavlakis N (2015) Pathogenic PALB2 mutation in metastatic pancreatic adenocarcinoma and neuroendocrine tumour: A case report. Molecular and clinical oncology 3:817–819. doi:https://doi.org/10.3892/mco.2015.533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castéra L, Krieger S, Rousselin A, Legros A, Baumann J-J, Bruet O, Brault B, Fouillet R, Goardon N, Letac O, Baert-Desurmont S, Tinat J, Bera O, Dugast C, Berthet P, Polycarpe F, Layet V, Hardouin A, Frébourg T, Vaur D (2014) Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. European Journal of Human Genetics 22:1305–1313. doi:https://doi.org/10.1038/ejhg.2014.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pw S, Mcintosh PM Thyroid Transcription Factor-1 (TTF-1): protein expression is not exclusive to lung and thyroid tissue. In.

  13. Weissferdt A, Tang X, Wistuba II, Moran CA (2013) Comparative immunohistochemical analysis of pulmonary and thymic neuroendocrine carcinomas using PAX8 and TTF-1. Modern Pathology 26:1554–1560. doi:https://doi.org/10.1038/modpathol.2013.111

    Article  CAS  PubMed  Google Scholar 

  14. Öberg K (2013) The genetics of neuroendocrine tumors. Seminars in oncology 40:37–44. doi:https://doi.org/10.1053/j.seminoncol.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  15. Duan K, Mete O (2017) Hereditary Endocrine Tumor Syndromes: The Clinical and Predictive Role of Molecular Histopathology. AJSP: Reviews & Reports 22:246–268

  16. Prakash R, Zhang Y, Feng W, Jasin M (2015) Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harbor perspectives in biology 7:a016600. doi:https://doi.org/10.1101/cshperspect.a016600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM (2006) Control of BRCA2 Cellular and Clinical Functions by a Nuclear Partner, PALB2. Molecular Cell 22:719–729. doi:https://doi.org/10.1016/j.molcel.2006.05.022

    Article  CAS  PubMed  Google Scholar 

  18. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, Lee A, Subramanian D, De Leeneer K, Fostira F, Tomiak E, Neuhausen SL, Teo ZL, Khan S, Aittomäki K, Moilanen JS, Turnbull C, Seal S, Mannermaa A, Kallioniemi A, Lindeman GJ, Buys SS, Andrulis IL, Radice P, Tondini C, Manoukian S, Toland AE, Miron P, Weitzel JN, Domchek SM, Poppe B, Claes KBM, Yannoukakos D, Concannon P, Bernstein JL, James PA, Easton DF, Goldgar DE, Hopper JL, Rahman N, Peterlongo P, Nevanlinna H, King M-C, Couch FJ, Southey MC, Winqvist R, Foulkes WD, Tischkowitz M (2014) Breast-cancer risk in families with mutations in PALB2. The New England journal of medicine 371:497–506. doi:https://doi.org/10.1056/NEJMoa1400382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dansonka-Mieszkowska A, Kluska A, Moes J, Dabrowska M, Nowakowska D, Niwinska A, Derlatka P, Cendrowski K, Kupryjanczyk J A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. In, 2010. doi:https://doi.org/10.1186/1471-2350-11-20, 11

  20. Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, Edlund CK, Conti D, Harrington P, Fraser L, Philpott S, Anderson C, Rosenthal A, Gentry-Maharaj A, Bowtell DD, Alsop K, Cicek MS, Cunningham JM, Fridley BL, Alsop J, Jimenez-Linan M, Høgdall E, Høgdall CK, Jensen A, Kjaer SK, Lubi’nski JLn, Huzarski T, Jakubowska A, Gronwald J, Poblete S, Lele S, Sucheston-Campbell L, Moysich KB, Odunsi K, Goode EL, Menon U, Jacobs IJ, Gayther SA, Pharoah PDP, Contributed SJR (2015) Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. doi:https://doi.org/10.1200/JCO.2015.61.2408

  21. Southey MC, Goldgar DE, Winqvist R, Pylkäs K, Couch F, Tischkowitz M, Foulkes WD, Dennis J, Michailidou K, van Rensburg EJ, Heikkinen T, Nevanlinna H, Hopper JL, Dörk T, Claes KB, Reis-Filho J, Teo ZL, Radice P, Catucci I, Peterlongo P, Tsimiklis H, Odefrey FA, Dowty JG, Schmidt MK, Broeks A, Hogervorst FB, Verhoef S, Carpenter J, Clarke C, Scott RJ, Fasching PA, Haeberle L, Ekici AB, Beckmann MW, Peto J, Dos-Santos-Silva I, Fletcher O, Johnson N, Bolla MK, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Marme F, Burwinkel B, Yang R, Guénel P, Truong T, Menegaux F, Sanchez M, Bojesen S, Nielsen SF, Flyger H, Benitez J, Zamora MP, Perez JIA, Menéndez P, Anton-Culver H, Neuhausen S, Ziogas A, Clarke CA, Brenner H, Arndt V, Stegmaier C, Brauch H, Brüning T, Ko Y-D, Muranen TA, Aittomäki K, Blomqvist C, Bogdanova NV, Antonenkova NN, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma V-M, Hartikainen JM, Spurdle AB, Investigators k, Australian Ovarian Cancer Study Group AOCS, Wauters E, Smeets D, Beuselinck B, Floris G, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Olson JE, Vachon C, Pankratz VS, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Kristensen V, Alnæs GG, Zheng W, Hunter DJ, Lindstrom S, Hankinson SE, Kraft P, Andrulis I, Knight JA, Glendon G, Mulligan AM, Jukkola-Vuorinen A, Grip M, Kauppila S, Devilee P, Tollenaar RAEM, Seynaeve C, Hollestelle A, Garcia-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Darabi H, Eriksson M, Eccles DM, Rafiq S, Tapper WJ, Gerty SM, Hooning MJ, Martens JWM, Collée JM, Tilanus-Linthorst M, Hall P, Li J, Brand JS, Humphreys K, Cox A, Reed MWR, Luccarini C, Baynes C, Dunning AM, Hamann U, Torres D, Ulmer HU, Rüdiger T, Jakubowska A, Lubinski J, Jaworska K, Durda K, Slager S, Toland AE, Ambrosone CB, Yannoukakos D, Swerdlow A, Ashworth A, Orr N, Jones M, González-Neira A, Pita G, Alonso MR, Álvarez N, Herrero D, Tessier DC, Vincent D, Bacot F, Simard J, Dumont M, Soucy P, Eeles R, Muir K, Wiklund F, Gronberg H, Schleutker J, Nordestgaard BG, Weischer M, Travis RC, Neal D, Donovan JL, Hamdy FC, Khaw K-T, Stanford JL, Blot WJ, Thibodeau S, Schaid DJ, Kelley JL, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Butterbach K, Park J, Kaneva R, Batra J, Teixeira MR, Kote-Jarai Z, Olama AAA, Benlloch S, Renner SP, Hartmann A, Hein A, Ruebner M, Lambrechts D, Van Nieuwenhuysen E, Vergote I, Lambretchs S, Doherty JA, Rossing MA, Nickels S, Eilber U, Wang-Gohrke S, Odunsi K, Sucheston-Campbell LE, Friel G, Lurie G, Killeen JL, Wilkens LR, Goodman MT, Runnebaum I, Hillemanns PA, Pelttari LM, Butzow R, Modugno F, Edwards RP, Ness RB, Moysich KB, du Bois A, Heitz F, Harter P, Kommoss S, Karlan BY, Walsh C, Lester J, Jensen A, Kjaer SK, Høgdall E, Peissel B, Bonanni B, Bernard L, Goode EL, Fridley BL, Vierkant RA, Cunningham JM, Larson MC, Fogarty ZC, Kalli KR, Liang D, Lu KH, Hildebrandt MAT, Wu X, Levine DA, Dao F, Bisogna M, Berchuck A, Iversen ES, Marks JR, Akushevich L, Cramer DW, Schildkraut J, Terry KL, Poole EM, Stampfer M, Tworoger SS, Bandera EV, Orlow I, Olson SH, Bjorge L, Salvesen HB, van Altena AM, Aben KKH, Kiemeney LA, Massuger LFAG, Pejovic T, Bean Y, Brooks-Wilson A, Kelemen LE, Cook LS, Le ND, Górski B, Gronwald J, Menkiszak J, Høgdall CK, Lundvall L, Nedergaard L, Engelholm SA, Dicks E, Tyrer J, Campbell I, McNeish I, Paul J, Siddiqui N, Glasspool R, Whittemore AS, Rothstein JH, McGuire V, Sieh W, Cai H, Shu X-O, Teten RT, Sutphen R, McLaughlin JR, Narod SA, Phelan CM, Monteiro AN, Fenstermacher D, Lin H-Y, Permuth JB, Sellers TA, Chen YA, Tsai Y-Y, Chen Z, Gentry-Maharaj A, Gayther SA, Ramus SJ, Menon U, Wu AH, Pearce CL, Van Den Berg D, Pike MC, Dansonka-Mieszkowska A, Plisiecka-Halasa J, Moes-Sosnowska J, Kupryjanczyk J, Pharoah PD, Song H, Winship I, Chenevix-Trench G, Giles GG, Tavtigian SV, Easton DF, Milne RL (2016) PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. Journal of medical genetics 53:800–811. doi:https://doi.org/10.1136/jmedgenet-2016-103839

    Article  CAS  PubMed  Google Scholar 

  22. Nalepa G, Clapp DW (2018) Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer 18 (3):168–185. doi:https://doi.org/10.1038/nrc.2017.116

    Article  CAS  PubMed  Google Scholar 

  23. Antoniou AC, Foulkes WD, Tischkowitz M, Group PI (2015) Breast cancer risk in women with PALB2 mutations in different populations. Lancet Oncol 16 (8):e375–e376. doi:https://doi.org/10.1016/S1470-2045(15)00002-9

    Article  PubMed  Google Scholar 

  24. Casadei S, Norquist BM, Walsh T, Stray S, Mandell JB, Lee MK, Stamatoyannopoulos JA, King M-C (2011) Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer research 71:2222–2229. doi:https://doi.org/10.1158/0008-5472.CAN-10-3958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shindo K, Yu J, Suenaga M, Fesharakizadeh S, Cho C, Macgregor-Das A, Siddiqui A, Witmer PD, Tamura K, Song TJ, Navarro Almario JA, Brant A, Borges M, Ford M, Barkley T, He J, Weiss MJ, Wolfgang CL, Roberts NJ, Hruban RH, Klein AP, Goggins M (2017) Deleterious Germline Mutations in Patients With Apparently Sporadic Pancreatic Adenocarcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 35:3382–3390. doi:https://doi.org/10.1200/JCO.2017.72.3502

    Article  CAS  Google Scholar 

  26. Southey MC, Winship I, Nguyen-Dumont T (2016) PALB2: research reaching to clinical outcomes for women with breast cancer. Hereditary cancer in clinical practice 14:9. doi:https://doi.org/10.1186/s13053-016-0049-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Li M, Chen P, Ba Q (2018) High expression of PALB2 predicts poor prognosis in patients with advanced breast cancer. FEBS open bio 8:56–63. doi:https://doi.org/10.1002/2211-5463.12356

    Article  CAS  PubMed  Google Scholar 

  28. Erkko H, Dowty JG, Nikkila« J, Syrja« K, Mannermaa A, Pylka« K, Southey MC, Holli K, Kallioniemi A, Jukkola-Vuorinen A, Kataja V, Kosma V-M, Xia B, Livingston DM, Winqvist R, Hopper JL (2008) Penetrance Analysis of the PALB2 c.1592delT Founder Mutation. https://doi.org/10.1158/1078-0432.CCR-08-0210

  29. Tischkowitz MD, Sabbaghian N, Hamel N, Borgida A, Rosner C, Taherian N, Srivastava A, Holter S, Rothenmund H, Ghadirian P, Foulkes WD, Gallinger S (2009) Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology 137:1183–1186. doi:https://doi.org/10.1053/j.gastro.2009.06.055

    Article  PubMed  Google Scholar 

  30. Daly MB, Pilarski R, Berry M, Buys SS, Farmer M, Friedman S, Garber JE, Kauff ND, Khan S, Klein C, Kohlmann W, Kurian A, Litton JK, Madlensky L, Merajver SD, Offit K, Pal T, Reiser G, Shannon KM, Swisher E, Vinayak S, Voian NC, Weitzel JN, Wick MJ, Wiesner GL, Dwyer M, Darlow S (2017) NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast and Ovarian, Version 2.2017. Journal of the National Comprehensive Cancer Network 15:9–20. doi:https://doi.org/10.6004/jnccn.2017.0003

    Article  CAS  PubMed  Google Scholar 

  31. Norquist BM, Harrell MI, Brady MF, Walsh T, Lee MK, Gulsuner S, Bernards SS, Casadei S, Yi Q, Burger RA, Chan JK, Davidson SA, Mannel RS, DiSilvestro PA, Lankes HA, Ramirez NC, King MC, Swisher EM, Birrer MJ (2016) Inherited Mutations in Women With Ovarian Carcinoma. JAMA oncology 2:482–490. doi:https://doi.org/10.1001/jamaoncol.2015.5495

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sopik V, Akbari MR, Narod SA (2015) Genetic testing for RAD51C mutations: in the clinic and community. Clin Genet 88 (4):303–312. doi:https://doi.org/10.1111/cge.12548

    Article  CAS  PubMed  Google Scholar 

  33. Tung N, Domchek SM, Stadler Z, Nathanson KL, Couch F, Garber JE, Offit K, Robson ME (2016) Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nature reviews Clinical oncology 13:581–588. doi:https://doi.org/10.1038/nrclinonc.2016.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cimmino F, Formicola D, Capasso M (2017) Dualistic Role of BARD1 in Cancer. doi:https://doi.org/10.3390/genes8120375

  35. Couch FJ, Shimelis H, Hu C, Hart SN, Polley EC, Na J, Hallberg E, Moore R, Thomas A, Lilyquist J, Feng B, Mcfarland R, Pesaran T, Huether R, Laduca H, Chao EC, Goldgar DE, Dolinsky JS, Author JO (2017) Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer HHS Public Access Author manuscript. JAMA Oncol 3:1190–1196. doi:https://doi.org/10.1001/jamaoncol.2017.0424

    Article  PubMed  PubMed Central  Google Scholar 

  36. Uccella S, La Rosa S, Volante M, Papotti M (2018) Immunohistochemical Biomarkers of Gastrointestinal, Pancreatic, Pulmonary, and Thymic Neuroendocrine Neoplasms. Endocrine Pathology 29:150–168. doi:https://doi.org/10.1007/s12022-018-9522-y

    Article  PubMed  Google Scholar 

  37. Lord CJ, Ashworth A (2017) PARP inhibitors: Synthetic lethality in the clinic. Science 355 (6330):1152–1158. doi:https://doi.org/10.1126/science.aam7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank our patients for consenting to the writing of this report and also to Dr. William Foulkes for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond H. Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szybowska, M., Mete, O., Weber, E. et al. Neuroendocrine Neoplasms Associated with Germline Pathogenic Variants in the Homologous Recombination Pathway. Endocr Pathol 30, 237–245 (2019). https://doi.org/10.1007/s12022-019-9569-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-019-9569-4

Navigation