Skip to main content

Advertisement

Log in

The RET E616Q Variant is a Gain of Function Mutation Present in a Family with Features of Multiple Endocrine Neoplasia 2A

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The REarranged during Transfection (RET) proto-oncogene is a receptor tyrosine kinase involved in growth and differentiation during embryogenesis and maintenance of the urogenital and nervous systems in mammals. Distinct mutations across hotspot RET exons can cause Multiple Endocrine Neoplasia Type 2A (MEN2A) characterised by development of medullary thyroid cancer (MTC), phaeochromocytoma (PCC) and primary hyperparathyroidism (PHPT), with a strong correlation between genotype and phenotype. Here, we report a 42-year-old man presented in the clinic with a unilateral PCC, with subsequent investigations revealing a nodular and cystic thyroid gland. He proceeded to thyroidectomy, which showed bilateral C-cell hyperplasia (CCH) without evidence of MTC. His brother had neonatal Hirschsprung disease (HSCR). Genetic testing revealed the presence of a heterozygous variant of unknown significance (VUS) in the cysteine-rich region of exon 10 in the RET gene (c.1846G>C, p.E616Q), in both affected siblings and their unaffected mother. Exon 10 RET mutations are known to be associated with HSCR and MEN2. Variants in the cysteine-rich region of the RET gene, outside of the key cysteine residues, may contribute to the development of MEN2 in a less aggressive manner, with a lower penetrance of MTC. Currently, a VUS in RET cannot be used to inform clinical management and direct future care. Analysis of RETE616Q reveals a gain of function mutant phenotype for this variant, which has not previously been reported, indicating that this VUS should be considered at risk for future clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takahashi M, Ritz J, Cooper GM (1985) Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42:581–588. doi: 10.1016/0092-8674(85)90115-1

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi M, Cooper GM (1987) ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 7:1378–1385.

  3. Takahashi M, Buma Y, Iwamoto T, et al. (1988) Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3:571–578.

    CAS  PubMed  Google Scholar 

  4. Manié S, Santoro M, Fusco A, Billaud M (2001) The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet 17:580–9.

    Article  PubMed  Google Scholar 

  5. Jing S, Wen D, Yu Y, et al. (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85:1113–1124. doi: 10.1016/S0092-8674(00)81311-2

    Article  CAS  PubMed  Google Scholar 

  6. Mise N, Drosten M, Racek T, et al. (2006) Evaluation of potential mechanisms underlying genotype-phenotype correlations in multiple endocrine neoplasia type 2. Oncogene 25:6637–47. doi: 10.1038/sj.onc.1209669

    Article  CAS  PubMed  Google Scholar 

  7. Machens A, Dralle H (2007) Genotype-phenotype based surgical concept of hereditary medullary thyroid carcinoma. World J Surg 31:957–968. doi: 10.1007/s00268-006-0769-y

    Article  PubMed  Google Scholar 

  8. Donis-Keller H, Dou S, Chi D, et al. (1993) Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 2:851–856. doi: 10.1093/hmg/2.7.851

    Article  CAS  PubMed  Google Scholar 

  9. Mulligan LM, Kwok JB, Healey CS, et al. (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363:458–460. doi: 10.1038/363458a0

    Article  CAS  PubMed  Google Scholar 

  10. Eng C, Crossey PA, Mulligan LM, et al. (1995) Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J Med Genet 32:934–937. doi: 10.1136/jmg.32.12.934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hofstra RM, Landsvater RM, Ceccherini I, et al. (1994) A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367:375–376. doi: 10.1038/367375a0

    Article  CAS  PubMed  Google Scholar 

  12. Santoro M, Carlomagno F (2013) Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol 5:a009233. doi: 10.1101/cshperspect.a009233

    Article  PubMed  PubMed Central  Google Scholar 

  13. Plaza-Menacho I, Mologni L, McDonald NQ (2014) Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal 26:1743–52. doi: 10.1016/j.cellsig.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  14. Dahia PLM (2014) Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer 14:108–19. doi: 10.1038/nrc3648

    Article  CAS  PubMed  Google Scholar 

  15. Drosten M, Hilken G, Bockmann M, et al. (2004) Role of MEN2A-derived RET in maintenance and proliferation of medullary thyroid carcinoma. J Natl Cancer Inst 96:1231–1239. doi: 10.1093/jnci/djh226

    Article  CAS  PubMed  Google Scholar 

  16. Cooper DS, Doherty GM, Haugen BR, et al. (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214. doi: 10.1089/thy.2009.0110

    Article  PubMed  Google Scholar 

  17. Kloos RT, Eng C, Evans DB, et al. (2009) Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19:565–612. doi: 10.1089/thy.2008.0403

    Article  PubMed  Google Scholar 

  18. Fialkowski EA, DeBenedetti MK, Moley JF, Bachrach B (2008) RET proto-oncogene testing in infants presenting with Hirschsprung disease identifies 2 new multiple endocrine neoplasia 2A kindreds. J Pediatr Surg 43:188–190. doi: 10.1016/j.jpedsurg.2007.09.043

    Article  PubMed  Google Scholar 

  19. Wells SA, Asa SL, Dralle H, et al. (2015) Revised american thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid 25:567–610. doi: 10.1089/thy.2014.0335

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tanaka M, Xiao H, Hirata Y, Kiuchi K (2003) A rapid assay for glial cell line-derived neurotrophic factor and neurturin based on transfection of cells with tyrosine hydroxylase promoter-luciferase construct. Brain Res Brain Res Protoc 11:119–22.

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi Y, Iwashita T, Murakamai H, et al. (2001) Activation of BMK1 via tyrosine 1062 in RET by GDNF and MEN2A mutation. Biochem Biophys Res Commun 281:682–9. doi: 10.1006/bbrc.2001.4338

    Article  CAS  PubMed  Google Scholar 

  22. Arighi E, Popsueva A, Degl’Innocenti D, et al. (2004) Biological effects of the dual phenotypic Janus mutation of ret cosegregating with both multiple endocrine neoplasia type 2 and Hirschsprung’s disease. Mol Endocrinol 18:1004–17. doi: 10.1210/me.2003-0173

    Article  CAS  PubMed  Google Scholar 

  23. Plaza-Menacho I, Van Der Sluis T, Hollema H, et al. (2007) Ras/ERK1/2-mediated STAT3 Ser727 phosphorylation by familial medullary thyroid carcinoma-associated RET mutants induces full activation of STAT3 and is required for c-fos promoter activation, cell mitogenicity, and transformation. J Biol Chem 282:6415–6424. doi: 10.1074/jbc.M608952200

    Article  CAS  PubMed  Google Scholar 

  24. Menacho IP, Koster R, Sloot AM Van Der, et al. (2005) RET-Familial Medullary Thyroid Carcinoma Mutants Y791F and S891A Activate a Src/JAK/STAT3 Pathway, Independent of Glial Cell Line − Derived Neurotrophic Factor of Glial Cell Line – Derived Neurotrophic Factor. 1729–1737.

  25. Xing S (1998) Signal Transduction Pathways Activated by RET Oncoproteins in PC12 Pheochromocytoma Cells. J Biol Chem 273:4909–4914. doi: 10.1074/jbc.273.9.4909

  26. Tacito A, Vivaldi A, Ciampi R, et al. (2013) Genetic Screening Of RET Can Identify New Mutations Even After 20 Years. Thyroid World Congr.

  27. Wolfe HJ, Melvin KE, Cervi-Skinner SJ, et al. (1973) C-cell hyperplasia preceding medullary thyroid carcinoma. N Engl J Med 289:437–41. doi: 10.1056/NEJM197308302890901

    Article  CAS  PubMed  Google Scholar 

  28. DeLellis RA, Nunnemacher G, Wolfe HJ (1977) C-cell hyperplasia. An ultrastructural analysis. Lab Invest 36:237–48.

    CAS  PubMed  Google Scholar 

  29. Cooper GM, Stone EA, Asimenos G, et al. (2005) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15:901–913. doi: 10.1101/gr.3577405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iwashita T, Murakami H, Asai N, Takahashi M (1996) Mechanism of ret dysfunction by Hirschsprung mutations affecting its extracellular domain. Hum Mol Genet 5:1577–80.

    Article  CAS  PubMed  Google Scholar 

  31. Hyndman BD, Gujral TS, Krieger JR, et al. (2013) Multiple functional effects of RET kinase domain sequence variants in Hirschsprung disease. Hum Mutat 34:132–42. doi: 10.1002/humu.22170

    Article  CAS  PubMed  Google Scholar 

  32. Coyle D, Friedmacher F, Puri P (2014) The association between Hirschsprung’s disease and multiple endocrine neoplasia type 2a: a systematic review. Pediatr Surg Int. doi: 10.1007/s00383-014-3538-2

    PubMed  Google Scholar 

  33. Tavtigian S V., Byrnes GB, Goldgar DE, Thomas A (2008) Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications. Hum Mutat 29:1342–1354. doi: 10.1002/humu.20896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cosci B, Vivaldi A, Romei C, et al. (2011) In silico and in vitro analysis of rare germline allelic variants of RET oncogene associated with medullary thyroid cancer. Endocr Relat Cancer 18:603–12. doi: 10.1530/ERC-11-0117

    Article  CAS  PubMed  Google Scholar 

  35. Santoro M, Melillo RM, Carlomagno F, et al. (2004) Minireview: RET: normal and abnormal functions. Endocrinology 145:5448–51. doi: 10.1210/en.2004-0922

    Article  CAS  PubMed  Google Scholar 

  36. Kambouris M, Jackson CE, Feldman GL (1996) Diagnosis of multiple endocrine neoplasia [MEN] 2A, 2B and familial medullary thyroid cancer [FMTC] by multiplex PCR and heteroduplex analyses of RET proto-oncogene mutations. Hum Mutat 8:64–70. doi: 10.1002/(SICI)1098-1004(1996)8:1<64::AID-HUMU9>3.0.CO;2-P

  37. Pelet A, Geneste O, Edery P, et al. (1998) Various mechanisms cause RET-mediated signaling defects in Hirschsprung’s disease. J Clin Invest 101:1415–1423. doi: 10.1172/JCI375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ibáñez CF (2013) Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a009134

    PubMed  PubMed Central  Google Scholar 

  39. Viola D ME, E M, L A, et al. (2014) Ret Oncogene and Thyroid Carcinoma. J Genet Syndr Gene Ther. doi: 10.4172/2157-7412.1000214

  40. Diaz-Cano SJ, De Miguel M, Blanes A, et al. (2001) Germline RET 634 mutation positive MEN 2A-related C-cell hyperplasias have genetic features consistent with intraepithelial neoplasia. J Clin Endocrinol Metab 86:3948–3957. doi: 10.1210/jc.86.8.3948

    Article  CAS  PubMed  Google Scholar 

  41. Ponder BA (1999) The phenotypes associated with ret mutations in the multiple endocrine neoplasia type 2 syndrome. Cancer Res 59:1736s–1741s; discussion 1742s.

  42. Smith-Hicks CL, Sizer KC, Powers JF, et al. (2000) C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J 19:612–22. doi: 10.1093/emboj/19.4.612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orgiana G, Pinna G, Camedda A, et al. (2004) A new germline RET mutation apparently devoid of transforming activity serendipitously discovered in a patient with atrophic autoimmune thyroiditis and primary ovarian failure. J Clin Endocrinol Metab 89:4810–6. doi: 10.1210/jc.2004-0365

    Article  CAS  PubMed  Google Scholar 

  44. Mears L, Diaz-Cano SJ (2003) Difference between familial and sporadic medullary thyroid carcinomas. Am J Surg Pathol 27:266–7.

    Article  PubMed  Google Scholar 

  45. Williams ED, Ponder BJ, Craig RK (1987) Immunohistochemical study of calcitonin gene-related peptide in human medullary carcinoma and C cell hyperplasia. Clin Endocrinol (Oxf) 27:107–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study has an ethical approval 13/SC/0574 (NRES Committee South Central - Hampshire A) sponsored by Guy’s and St Thomas’ NHS Foundation Trust (study number RJ114/N093) and also registered at King’s College Hospital (study number KCH14-124). All subjects provided written, informed consent for the research study (ethical approval 13/SC/0574).

This work was supported by The Generation Trust (KCL) and Friends of Guy’s Hospital Research Fund.

Author Contributions

We thank the following people for their contributions:

Dr Neil McDonald (The Francis Crick Institute)

Dr Ivan Plaza-Menacho (UCL)

Dr Simon Aylwin, Mr Klaus-Martin Schulte, Dr Dylan Lewis and Professor Alan McGregor (KCH)

Dr Paul Carroll, Dr Hosahalli Mohan, Celia Mills and Teresa Brothwood, Michelle Weston and Dr Christine Patch (GSTFT)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Izatt.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Financial Disclosure

Nothing to declare

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supp. Fig. 1

Foci of C-cell hyperplasia revealed intrafollicular circumferential proliferation of C-cell without nuclear atypia. No solid C-cell nests or stromal invasion were identified (haematoxylin-eosin and immunohistochemical stain for calcitonin, 100×). Method as described by Williams et al. [45]. (PPTX 915 kb)

Supp. Fig. 2

A. In silico analysis of the RET51 protein sequence using the Align-GVGD program (http://agvgd.iarc.fr). Mutations are depicted as solid circles, labelled to the right. GV = Grantham Variation, GD = Grantham Deviation. B. Table summarising GD, GV and predicted class of pathogenicity along the Align-GVGD scale (C0 = weakest pathogenicity, C65 = strongest pathogenicity). (GIF 70 kb)

Supp. Fig. 3

Data for Empty Vector controls only from Fig. 2. The graph shows increasing induction of Luciferase activity when serum, GDNF or both are added for 16 h. (GIF 23 kb)

Supplementary Table 1

Patient features for all heterozygous RET E616Q family members at last clinical evaluation or age at operation. (DOCX 16.4 kb)

Supplementary Table 2

Primers used in this study. Purpose is noted in the final column. (DOCX 18 kb)

Supplementary Table 3

Further hereditary phaeochromocytoma and paraganglioma genes sequenced by NGMS during this study (PPGL) including; HGNC name, symbol, number, OMIM ID and clinical phenotype. The entire RET gene (20 exons) was sequenced during initial investigation and subsequent PPGL gene analysis confirmed the heterozygous RET E616Q variant. In addition MLPA analysis of the following genes was completed: RET, SDHAF2, SDHB, SDHC, SDHD and VHL. (DOCX 15 kb)

Supplementary Table 4

Adapted from ARUP laboratories, University of Utah (www.arup.utah.edu/database/men2). Genetic and disease associated information for mutations generated in this study, including our RET E616Q. N/R, not recorded, N/A, not applicable. (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grey, W., Hulse, R., Yakovleva, A. et al. The RET E616Q Variant is a Gain of Function Mutation Present in a Family with Features of Multiple Endocrine Neoplasia 2A. Endocr Pathol 28, 41–48 (2017). https://doi.org/10.1007/s12022-016-9451-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-016-9451-6

Keywords

Navigation