Skip to main content
Log in

Cocaine-Induced Preference Conditioning: a Machine Vision Perspective

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Existing work on drug-induced synaptic changes has shown that the expression of perineuronal nets (PNNs) at the cerebellar cortex can be regulated by cocaine-related memory. However, these studies on animals have mostly relied on limited manually-driven procedures, and lack some more rigorous statistical approaches and more automated techniques. In this work, established methods from computer vision and machine learning are considered to build stronger evidence of those previous findings. To that end, an image descriptor is designed to characterize PNNs images; unsupervised learning (clustering) is used to automatically find distinctive patterns of PNNs; and supervised learning (classification) is adopted for predicting the experiment group of the mice from their PNN images. Experts in neurobiology, who were not aware of the underlying computational procedures, were asked to describe the patterns emerging from the automatically found clusters, and their descriptions were found to align surprisingly well with the two types of PNN images revealed from previous studies, namely strong and weak PNNs. Furthermore, when the set of PNN images corresponding to every mice in the saline (control) group and the conditioned (experimental) group were characterized using a bag-of-words representation, and subject to supervised learning (saline vs conditioned mice), the high classification results suggest the ability of the proposed representation and procedures in recognizing these groups. Therefore, despite the limited size of the dataset (1,032 PNN images of 6 saline and 6 conditioned mice), the results support existing evidence on the drug-related brain plasticity, while providing higher objectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armano, S., Rossi, P., Taglietti, V., D’Angelo, E. (2000). Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. Journal of Neuroscience, 20(14), 5208–5216.

    Article  CAS  Google Scholar 

  • Blacktop, J. M., Todd, R. P., Sorg, B. A. (2017). Role of perineuronal nets in the anterior dorsal lateral hypothalamic area in the acquisition of cocaine-induced conditioned place preference and self-administration. Neuropharmacology, 118, 124–136.

    Article  PubMed Central  CAS  Google Scholar 

  • Brückner, G., Brauer, K., Härtig, W., Wolff, J. R., Rickmann, M. J., Derouiche, A., Delpech, B., Girard, N., Oertel, W. H., Reichenbach, A. (1993). Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia, 8(3), 183–200.

    Article  Google Scholar 

  • Carbo-Gas, M., Vazquez-Sanroman, D., Aguirre-Manzo, L., Coria-Avila, G. A., Manzo, J., Sanchis-Segura, C., Miquel, M. (2014a). sInvolving the cerebellum in cocaine-induced memory: pattern of cFos expression in mice trained to acquire conditioned preference for cocaine. Addiction Biology, 19(1), 61–76.

  • Carbo-Gas, M., Vazquez-Sanroman, D., Gil-Miravet, I., De las Heras-Chanes, J., Coria-Avila, G. A., Manzo, J., Sanchis-Segura, C., Miquel, M. (2014b). Cerebellar hallmarks of conditioned preference for cocaine. Physiology & Behavior, 132, 24–35.

  • Carbo-Gas, M., Moreno-Rius, J., Guarque-Chabrera, J., Vazquez-Sanroman, D., Gil-Miravet, I., Carulli, D., Hoebeek, F., Zeeuw, Chris D., Sanchis-Segura, C., Miquel, M. (2017). Cerebellar perineuronal nets in cocaine-induced pavlovian memory: site matters. Neuropharmacology, 125, 166–180.

    Article  CAS  Google Scholar 

  • Carta, M., Mameli, M., Valenzuela, C. F. (2004). Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. The Journal of Neuroscience 24(15), 3746–3751.

  • Carulli, D., Laabs, T., Geller, H. M., Fawcett, J. W. (2005). Chondroitin sulfate proteoglycans in neural development and regeneration. Current Opinion in Neurobiology, 15(1), 116–120.

    Article  Google Scholar 

  • Carulli, D., Rhodes, K. E., Brown, D. J., Bonnert, T. P., Pollack, S. J., Oliver, K., Strata, P., Fawcett, J. W. (2006). Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. The Journal of Comparative Neurology, 494(4), 559–577.

    Article  CAS  Google Scholar 

  • Carulli, D., Foscarin, S., Faralli, A., Pajaj, E., Rossi, F. (2013). Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum. Molecular and Cellular Neuroscience, 57, 10–22.

    Article  CAS  Google Scholar 

  • D’Angelo, E., & De Zeeuw, C. I. (2009). Timing and plasticity in the cerebellum: focus on the granular layer. Trends in Neurosciences, 32(1), 30–40.

    Article  Google Scholar 

  • Foscarin, S., Ponchione, D., Pajaj, E., Leto, K., Gawlak, M., Wilczynski, G. M., Rossi, F., Carulli, D. (2011). Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLOS ONE, 01(1), 1–14.

    Google Scholar 

  • Frischknecht, R., Heine, M., Perrais, D., Seidenbecher, C. I., Choquet, D., Gundelfinger, E. D. (2009). Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nature Neuroscience, 12(7), 897–904.

    Article  CAS  Google Scholar 

  • Ghani, M. U., Mesadi, F., Kankık, S. D., Argunşah, A. O, Hobbiss, A. F., Israely, I., Ünay, D., Taşdizen, T., Çetin, M. (2017). Dendritic spine classification using shape and appearance features based on two-photon microscopy. Journal of Neuroscience Methods, 279, 13–21.

    Article  Google Scholar 

  • Gillette, T. A., Brown, K. M., Ascoli, G. A. (2011). The DIADEM metric: comparing multiple reconstructions of the same neuron. Neuroinformatics, 9(2), 233.

    Article  PubMed Central  Google Scholar 

  • Grigorescu, S. E., Petkov, N., Kruizinga, P. (2002). Comparison of texture features based on Gabor filters. IEEE Transactions on Image Processing, 11(10), 1160–1167. ISSN 1057-7149. https://doi.org/10.1109/TIP.2002.804262.

    Article  Google Scholar 

  • Grimpe, B., & Silver, J. (2002). The extracellular matrix in axon regeneration. Progress in Brain Research, 137, 333–349.

    Article  CAS  Google Scholar 

  • Hyman, S. E., Malenka, R. C., Nestler, E. J. (2006). Neural mechanisms of addiction: the role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565–598.

    Article  CAS  Google Scholar 

  • Härtig, W., Brauer, K., Brückner, G. (1992). Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. Neuroreport, 3(10), 869–872.

    Article  Google Scholar 

  • Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666.

    Article  Google Scholar 

  • Lazebnik, S., Schmid, C., Ponce, J. (2006). Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In IEEE conference on computer vision and pattern recognition.

  • Liu, C., Yuen, J., flow, A. Torralba. SIFT. (2011). Dense correspondence across scenes and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 978–994.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630.

    Article  Google Scholar 

  • Moreno-Rius, J., & Miquel, M. (2017). The cerebellum in drug craving. Drug and Alcohol Dependence, 173, 151–158.

    Article  Google Scholar 

  • Moulton, E. A., Elman, I., Becerra, L. R., Goldstein, R. Z., Borsook, D. (2014). The cerebellum and addiction: insights gained from neuroimaging research. Addict Biology, 19(3), 317–331.

    Article  Google Scholar 

  • Niebles, J. C., & Li, F.-F. (2007). A hierarchical model of shape and appearance for human action classification. In IEEE conference on computer vision and pattern recognition.

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  • Santamaría-Pang, A., Hernandez-Herrera, P., Papadakis, M., Saggau, P., Kakadiaris, I. A. (2015). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images using 3D tubular models. Neuroinformatics, 13(3), 297–320. ISSN 1559-0089.

    Article  Google Scholar 

  • Scott, D. W. (1992). Multivariate density estimation: theory, practice, and visualization. New York: Wiley.

    Book  Google Scholar 

  • Scovanner, P., Ali, S., Shah, M. (2007). A 3-dimensional SIFT descriptor and its application to action recognition. In Proceedings of the 15th ACM international conference on multimedia (pp. 357–360). New York.

  • Shaham, Y., Shalev, U., Lu, L., de Wit, H., Stewart, J. (2003). The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology, 168(1–2), 3–20.

  • Slaker, M., Churchill, L., Todd, R. P., Blacktop, J. M., Zuloaga, D. G., Raber, J., Darling, R. A., Brown, T. E., Sorg, B. A. (2015). Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. The Journal of Neuroscience, 35(10), 4190–4202.

    Article  PubMed Central  CAS  Google Scholar 

  • Slaker, M. L., Harkness, J. H., Sorg, B. A. (2016). A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity. IBRO Rep, 1, 54–60.

    Article  PubMed Central  Google Scholar 

  • Sorg, B. A., Berretta, S., Blacktop, J. M., Fawcett, J. W., Kitagawa, H., Kwok, J. C., Miquel, M. (2016). Casting a wide net: role of perineuronal nets in neural plasticity. The Journal of Neuroscience, 36(45), 11459–11468.

    Article  PubMed Central  CAS  Google Scholar 

  • Toyama, B. H., & Hetzer, M. W. (2013). Protein homeostasis: live long, won’t prosper. Nature Reviews Molecular Cell Biology, 14(1), 55–61.

    Article  PubMed Central  CAS  Google Scholar 

  • Tuytelaars, T., & Mikolajczyk, K. (2008). Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision, 3(3), 177–280.

    Article  Google Scholar 

  • Van den Oever, M. C., Lubbers, B. R., Goriounova, N. A., Li, K. W., Van der Schors, R. C., Loos, M., Riga, D., Wiskerke, J., Binnekade, R., Stegeman, M., Schoffelmeer, A. N., Mansvelder, H. D., Smit, A. B., De Vries, T. J., Spijker, S. (2010). Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking. Neuropsychopharmacology, 35(10), 2120–2133.

    Article  Google Scholar 

  • van der Maaten, L. (2018). t-SNE https://lvdmaaten.github.io/tsne, Last accessed: July 2018.

  • van der Maaten, L. J. P., & Hinton, G. E. (2008). Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.

  • van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., Yu, T., Scikit-image contributors. (2014). scikit-image: image processing in Python. PeerJ, 2, e453, 6. ISSN 2167-8359. https://doi.org/10.7717/peerj.453.

  • Vapnik, V. N. (1998). Statistical Learning Theory. New York: Wiley,.

    Google Scholar 

  • Vazquez-Sanroman, D., Carbo-Gas, M., Leto, K., Cerezo-Garcia, M., Gil-Miravet, I., Sanchis-Segura, C., Carulli, D., Rossi, F., Miquel, M. (2015a). Cocaine-induced plasticity in the cerebellum of sensitised mice. Psychopharmacology (Berl.), 232(24), 4455–4467.

  • Vazquez-Sanroman, D., Leto, K., Cerezo-Garcia, M., Carbo-Gas, M., Sanchis-Segura, C., Carulli, D., Rossi, F., Miquel, M. (2015b). The cerebellum on cocaine: plasticity and metaplasticity. Addiction Biology, 20(5), 941–955.

  • Vazquez-Sanroman, D. B., Monje, R. D., Bardo, M. T. (2017). Nicotine self-administration remodels perineuronal nets in ventral tegmental area and orbitofrontal cortex in adult male rats. Addiction biology, 22(6), 1743–1755.

    Article  CAS  Google Scholar 

  • Vedaldi, A., & Fulkerson, B. (2008). VLFeat: an open and portable library of computer vision algorithms. http://www.vlfeat.org/.

  • Vinukonda, P. (2011). A study of the scale-invariant feature transform on a parallel pipeline. Master’s thesis, Department of Electrical and Computer Engineering, Louisiana State University. https://digitalcommons.lsu.edu/cgi/viewcontent.cgi?article=3720&context=gradschool_theses, Last access: July 2018.

  • Wan, Y., Long, F., Qu, L., Xiao, H., Hawrylycz, M., Myers, E. W., Peng, H. (2015). BlastNeuron for automated comparison, retrieval and clustering of 3D neuron morphologies. Neuroinformatics, 13(4), 487–499.

    Article  Google Scholar 

  • Wright, J. W., & Harding, J. W. (2009). Contributions of matrix metalloproteinases to neural plasticity, habituation, associative learning and drug addiction. Neural Plasticity, 2009, 579382.

    Article  Google Scholar 

  • Xue, Y. X., Xue, L. F., Liu, J. F., He, J., Deng, J. H., Sun, S. C., Han, H. B., Luo, Y. X., Xu, L. Z., Wu, P., Lu, L. (2014). Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. The Journal of Neuroscience, 34(19), 6647–6658.

    Article  CAS  Google Scholar 

  • Yu, J., Qin, Z., Wan, T., Zhang, X. (2013). Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing, 120, 355–364.

    Article  Google Scholar 

  • Zhang, D., Liu, S., Song, Y., Feng, D., Peng, H., Cai, W. (2018). Automated 3D soma segmentation with morphological surface evolution for neuron reconstruction. Neuroinformatics 16(2):153-166.

  • Zhao, W. L., & Ngo, C. W. (2013). Flip-invariant SIFT for copy and object detection. IEEE Transactions on Image Processing, 22(3), 980–991.

    Article  Google Scholar 

Download references

Acknowledgments

This work is partly funded by Universitat Jaume I (P1.1B2014-09), by Ministerio de Economía y Competitividad through Plan Nacional de I+D (PSI2015-68600-P), grant FPU12/04059 from Ministerio de Educación, Cultura y Deporte, and grant PREDOC2014/11 from Universitat Jaume I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Javier Traver.

Ethics declarations

Conflict of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traver, V.J., Pla, F., Miquel, M. et al. Cocaine-Induced Preference Conditioning: a Machine Vision Perspective. Neuroinform 17, 343–359 (2019). https://doi.org/10.1007/s12021-018-9401-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9401-1

Keywords

Navigation