Skip to main content
Log in

NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction

  • Software Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander-Bloch, A., Clasen, L., Stockman, M., Ronan, L., Lalonde, F., Giedd, J., et al. (2016). Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo mri. Hum Brain Mapp, 37, 2385–2397. https://doi.org/10.1002/hbm.23180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belsky, D. W., Caspi, A., Houts, R., Cohen, H. J., Corcoran, D. L., Danese, A., et al. (2015). Quantification of biological aging in young adults. Proc Natl Acad Sci, 112, E4104–E4110. https://doi.org/10.1073/pnas.1506264112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chee, M. W. L., Zheng, H., Goh, J. O. S., Park, D., & Sutton, B. P. (2011). Brain structure in young and old east asians and westerners: Comparisons of structural volume and cortical thickness. J Cogn Neurosci, 23, 1065–1079.

    Article  PubMed  Google Scholar 

  • Cole, J. H., Annus, T., Wilson, L. R., Remtulla, R., Hong, Y. T., Fryer, T. D., et al. (2017a). Brain-predicted age in down syndrome is associated with beta amyloid deposition and cognitive decline. Neurobiol Aging, 56, 41–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole J.H., Poudel R.P.K., Tsagkrasoulis D., Caan M.W.A., Steves C., Spector T.D., et al. (2017b) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.07.059

  • Cole, J. H., Ritchie, S. J., Bastin, M. E., Valdes Hernandez, M. C., Munoz Maniega, S., Royle, N., et al. (2017c). Brain age predicts mortality. Mol Psychiatry. https://doi.org/10.1038/mp.2017.62.

  • Cole J.H., Leech R., Sharp D.J., Alzheimer's Disease Neuroimaging Initiative (2015). Prediction of brain age suggests accelerated atrophy after traumatic brain injury, Annals of Neurology. 77(4):571–581. https://doi.org/10.1002/ana.24367.

  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing https://www.R-project.org/.

    Google Scholar 

  • Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry, 19, 659–667.

    Article  PubMed  Google Scholar 

  • Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A, 97, 11050–11055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke, K., Ziegler, G., Klöppel, S., & Gaser, C. (2010). Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage, 50, 883–892. https://doi.org/10.1016/j.neuroimage.2010.01.005.

    Article  PubMed  Google Scholar 

  • Franke, K., Luders, E., May, A., Wilke, M., & Gaser, C. (2012). Brain maturation: Predicting individual brainage in children and adolescents using structural MRI. NeuroImage, 63, 1305–1312. https://doi.org/10.1016/j.neuroimage.2012.08.001.

    Article  PubMed  Google Scholar 

  • Franke, K., Ristow, M., & Gaser, C. (2014). Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects. Front Aging Neurosci, 6, 94. https://doi.org/10.3389/fnagi.2014.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaser, C., Franke, K., Kloppel, S., Koutsouleris, N., & Sauer, H. (2013). BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer’s disease. PLoS One, 8, e67346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgolewski, K., Burns, C., Madison, C., Clark, D., Halchenko, Y., Waskom, M., et al. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics., 5, 13. https://doi.org/10.3389/fninf.2011.00013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data, 3, 160044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capot, M., Chakravarty, M. M., et al. (2017). BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Comput Biol, e1005209, 13.

    Google Scholar 

  • Halchenko, Y., & Hanke, M. (2012). Open is not enough. let’s take the next step: An integrated, community-driven computing platform for neuroscience. Frontiers in Neuroinformatics, 6, 22. https://doi.org/10.3389/fninf.2012.00022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Im, K., Lee, J. M., Lee, J., Shin, Y. W., Kim, I. Y., Kwon, J. S., et al. (2006). Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. NeuroImage, 31, 31–38.

    Article  PubMed  Google Scholar 

  • Karatzoglou A, Smola A, Hornik K, Zeileis A. (2004) Kernlab-an s4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20

  • Kennedy, D. N., Haselgrove, C., Riehl, J., Preuss, N., & Buccigrossi, R. (2015). The three NITRCs: A guide to neuroimaging Neuroinformatics resources. Neuroinformatics, 13, 383–386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koolschijn, P. C., & Crone, E. A. (2013). Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci, 5, 106–118.

    Article  PubMed  Google Scholar 

  • Koutsouleris, N., Davatzikos, C., Borgwardt, S., Gaser, C., Bottlender, R., Frodl, T., et al. (2013). Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders. Schizophr Bull. https://doi.org/10.1093/schbul/sbt142.

  • Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., et al. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage, 148, 179–188. https://doi.org/10.1016/j.neuroimage.2016.11.005.

    Article  PubMed  Google Scholar 

  • Luders, E., Cherbuin, N., & Gaser, C. (2016). Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners. NeuroImage, 134, 508–513.

    Article  PubMed  Google Scholar 

  • Luo, X. Z., Kennedy, D. N., & Cohen, Z. (2009). Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement. Neuroinformatics, 7, 55–56.

    Article  PubMed  Google Scholar 

  • Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., et al. (2016). Multimodal population brain imaging in the UK biobank prospective epidemiological study. Nat Neurosci, 19, 1523–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nooner, K., Colcombe, S., Tobe, R., Mennes, M., Benedict, M., Moreno, A., et al. (2012). The nki-rockland sample: A model for accelerating the pace of discovery science in psychiatry. Front Neurosci, 6, 152. https://doi.org/10.3389/fnins.2012.00152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ooms, J. (2014) The opencpu system: Towards a universal interface for scientific computing through separation of concerns. eprint arXiv:1406.4806

  • Pardoe, H. R., Hiess, R. K., & Kuzniecky, R. (2016). Motion and morphometry in clinical and nonclinical populations. NeuroImage, 135, 177–185. https://doi.org/10.1016/j.neuroimage.2016.05.005.

    Article  PubMed  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in python. J Mach Learn Res, 12, 2825–2830.

    Google Scholar 

  • Rasmussen, C.E., Williams C.K.I. (2005) Gaussian processes for machine learning (adaptive computation and machine learning). p. 266 London: The MIT Press.

  • Reuter, M., Tisdall, M. D., Qureshi, A., Buckner, R. L., Kouwe, A. J., & van der Fischl, B. (2015). Head motion during {mri} acquisition reduces gray matter volume and thickness estimates. NeuroImage, 107, 107–115. https://doi.org/10.1016/j.neuroimage.2014.12.006.

    Article  PubMed  Google Scholar 

  • Rodrigue, K. M., Kennedy, K. M., Devous, M. D., Rieck, J. R., Hebrank, A. C., Diaz-Arrastia, R., et al. (2012). β-amyloid burden in healthy aging: Regional distribution and cognitive consequences. Neurology, 78, 387–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savalia, N. K., Agres, P. F., Chan, M. Y., Feczko, E. J., Kennedy, K. M., & Wig, G. S. (2017). Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion. Hum Brain Mapp, 38, 472–492. https://doi.org/10.1002/hbm.23397.

    Article  PubMed  Google Scholar 

  • Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., et al. (2013). PRoNTo: Pattern recognition for neuroimaging toolbox. Neuroinformatics, 11, 319–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., et al. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb Cortex, 17, 1550–1560.

    Article  PubMed  Google Scholar 

  • Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. J Mach Learn Res, 1, 211–244.

    Google Scholar 

  • Tustison, N. J., Cook, P. A., Klein, A., Song, G., Das, S. R., Duda, J. T., et al. (2014). Large-scale evaluation of ants and freesurfer cortical thickness measurements. NeuroImage, 99, 166–179. https://doi.org/10.1016/j.neuroimage.2014.05.044.

    Article  PubMed  Google Scholar 

  • Zuo, X. N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J., et al. (2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Sci Data., 1, 140049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The NAPR project was supported by FACES (Finding a Cure for Epilepsy and Seizures) and Amazon Web Services Cloud Credits for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heath R. Pardoe.

Electronic supplementary material

ESM 1

(XLSX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardoe, H.R., Kuzniecky, R. NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction. Neuroinform 16, 43–49 (2018). https://doi.org/10.1007/s12021-017-9346-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-017-9346-9

Keywords

Navigation