Skip to main content
Log in

Hemodynamic changes in neonates born to mothers with Graves’ disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Cardiac insufficiency is a major morbidity in neonatal hyperthyroidism. It is important to assess the hemodynamics in neonates born to mothers with Graves’ disease (GD). This study prospectively evaluated the hemodynamic changes in neonates born to mothers with GD.

Methods

Overall, 80 newborns were enrolled. Thirty-six neonates were born to mothers with GD who were positive for thyroid-stimulating hormone (TSH) receptor antibody (TRAb), and 44 were born to mother negative for TRAb. The serum levels of TSH, free triiodothyronine (FT3), free thyroxine (FT4), and N-terminal-pro-B-type natriuretic peptide (NT-proBNP), the cardiac output, and cardiac index (CI) evaluated by echocardiography were compared between the two groups at several postnatal points (day of delivery and 5, 10, and 30 days of life).

Results

The TRAb-positive newborns had higher FT4 levels and CI on Day 5 (both p < 0.05) and higher FT3 (p < 0.05) and FT4 levels (p < 0.01) and CI (p < 0.01) but lower TSH levels (p < 0.05) on Day 10 than the TRAb-negative newborns. The TRAb-positive newborns had significantly higher NT-proBNP levels on Days 5 (median 752 vs. 563 pg/mL, p = 0.034) and 10 (median 789 vs. 552 pg/mL, p = 0.002) than the TRAb-negative newborns.

Conclusions

Hemodynamic changes in neonates born to TRAb-positive mothers with GD resulted in a higher CI and NT-proBNP levels than in those with TRAb-negative mothers from postnatal days 5 to 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. P. Sunshine, H. Kusumoto, J.P. Kriss, Survival time of circulating long-acting thyroid stimulator in neonatal thyrotoxicosis: implications for diagnosis and therapy of the disorder. Pediatrics 36(6), 869–876 (1965)

    CAS  PubMed  Google Scholar 

  2. J.M. McKenzie, M. Zakarija, Fetal and neonatal hyperthyroidism and hypothyroidism due to maternal TSH receptor antibodies. Thyroid 2(2), 155–159 (1992). https://doi.org/10.1089/thy.1992.2.155

    Article  CAS  PubMed  Google Scholar 

  3. P. Laurberg, C. Bournaud, J. Karmisholt, J. Orgiazzi, Management of Graves’ hyperthyroidism in pregnancy: focus on both maternal and foetal thyroid function, and caution against surgical thyroidectomy in pregnancy. Eur. J. Endocrinol. 160(1), 1–8 (2009). https://doi.org/10.1530/eje-08-0663

    Article  CAS  PubMed  Google Scholar 

  4. D. Zimmerman, Fetal and neonatal hyperthyroidism. Thyroid 9(7), 727–733 (1999). https://doi.org/10.1089/thy.1999.9.727

    Article  CAS  PubMed  Google Scholar 

  5. M. Polak, Hyperthyroidism in early infancy: pathogenesis, clinical features and diagnosis with a focus on neonatal hyperthyroidism. Thyroid 8(12), 1171–1177 (1998). https://doi.org/10.1089/thy.1998.8.1171

    Article  CAS  PubMed  Google Scholar 

  6. G. Radetti, A. Zavallone, L. Gentili, P. Beck-Peccoz, G. Bona, Foetal and neonatal thyroid disorders. Minerva Pediatr. 54(5), 383–400 (2002)

    CAS  PubMed  Google Scholar 

  7. E.S. Lightner, H.D. Allen, G. Loughlin, Neonatal hyperthyroidism and heart failure. A differential approach. Am. J. Dis. Child. 131(1), 68–70 (1977). https://doi.org/10.1001/archpedi.1977.02120140070012

    Article  CAS  PubMed  Google Scholar 

  8. Y.L. Bussmann, M.L. Tillman, A.S. Pagliara, Neonatal thyrotoxicosis associated with the hyperviscosity syndrome. J. Pediatr. 90(2), 266–268 (1977). https://doi.org/10.1016/s0022-3476(77)80648-3

    Article  CAS  PubMed  Google Scholar 

  9. D. O’Donovan, C. McMahon, C. Costigan, P. Oslizlok, D. Duff, Reversible pulmonary hypertension in neonatal Graves disease. Ir. Med. J. 90(4), 147–148 (1997)

    PubMed  Google Scholar 

  10. A.A. Zuppa, P. Sindico, I. Savarese, V. D’Andrea, A. Fracchiolla, F. Cota, C. Romagnoli, Neonatal hyperthyroidism: neonatal clinical course of two brothers born to a mother with Graves-Basedow disease, before and after total thyroidectomy. J. Pediatr. Endocrinol. Metab. 20(4), 535–539 (2007). https://doi.org/10.1515/jpem.2007.20.4.535

    Article  CAS  PubMed  Google Scholar 

  11. L.Q. Gu, L. Zhao, W. Zhu, F.Y. Li, M.J. Zhang, Y. Liu, J.M. Liu, G. Ning, Y.J. Zhao, Relationships between serum levels of thyroid hormones and serum concentrations of asymmetric dimethylarginine (ADMA) and N-terminal-pro-B-type natriuretic peptide (NT-proBNP) in patients with Graves’ disease. Endocrine. 39(3), 266–271 (2011). https://doi.org/10.1007/s12020-011-9436-7

    Article  CAS  PubMed  Google Scholar 

  12. S. Arikan, A. Tuzcu, D. Gokalp, M. Bahceci, R. Danis, Hyperthyroidism may affect serum N-terminal pro-B-type natriuretic peptide levels independently of cardiac dysfunction. Clin. Endocrinol. 67(2), 202–207 (2007). https://doi.org/10.1111/j.1365-2265.2007.02861.x

    Article  CAS  Google Scholar 

  13. B. Ozmen, D. Ozmen, Z. Parildar, I. Mutaf, O. Bayindir, Serum N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) levels in hyperthyroidism and hypothyroidism. Endocr. Res. 32(1-2), 1–8 (2007). https://doi.org/10.1080/07435800701670047

    Article  CAS  PubMed  Google Scholar 

  14. C. Massart, J. Orgiazzi, D. Maugendre, Clinical validity of a new commercial method for detection of TSH-receptor binding antibodies in sera from patients with Graves’ disease treated with antithyroid drugs. Clin. Chim. Acta. 304(1–2), 39–47 (2001). https://doi.org/10.1016/s0009-8981(00)00385-5

    Article  CAS  PubMed  Google Scholar 

  15. A.P. Weetman, Graves’ disease. N. Engl. J. Med. 343(17), 1236–1248 (2000). https://doi.org/10.1056/nejm200010263431707

    Article  CAS  PubMed  Google Scholar 

  16. E. Lechner, G. Wiesinger-Eidenberger, O. Wagner, M. Weissensteiner, E. Schreier-Lechner, D. Leibetseder, W. Arzt, G. Tulzer, Amino terminal pro B-type natriuretic peptide levels are elevated in the cord blood of neonates with congenital heart defect. Pediatr. Res. 66(4), 466–469 (2009). https://doi.org/10.1203/PDR.0b013e3181b3aee4

    Article  CAS  PubMed  Google Scholar 

  17. I. Farombi-Oghuvbu, T. Matthews, P.D. Mayne, H. Guerin, J.D. Corcoran, N-terminal pro-B-type natriuretic peptide: a measure of significant patent ductus arteriosus. Arch. Dis. Child. Fetal. Neonatal. Ed. 93(4), F257–F260 (2008). https://doi.org/10.1136/adc.2007.120691

    Article  CAS  PubMed  Google Scholar 

  18. E.W. Reynolds, J.G. Ellington, M. Vranicar, H.S. Bada, Brain-type natriuretic peptide in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatrics 114(5), 1297–1304 (2004). https://doi.org/10.1542/peds.2004-0525

    Article  PubMed  Google Scholar 

  19. van der Kaay D. C., Wasserman J. D., Palmert M. R. Management of neonates born to mothers with Graves’ disease. Pediatrics 137(4) (2016). https://doi.org/10.1542/peds.2015-1878

  20. T. Tajima, W. Jo, K. Fujikura, M. Fukushi, K. Fujieda, Elevated free thyroxine levels detected by a neonatal screening system. Pediatr. Res. 66(3), 312–316 (2009). https://doi.org/10.1203/PDR.0b013e3181b1bcbd

    Article  CAS  PubMed  Google Scholar 

  21. L. Schwachtgen, M. Herrmann, T. Georg, P. Schwarz, N. Marx, A. Lindinger, Reference values of NT-proBNP serum concentrations in the umbilical cord blood and in healthy neonates and children. Z. Kardiol. 94(6), 399–404 (2005). https://doi.org/10.1007/s00392-005-0246-x

    Article  CAS  PubMed  Google Scholar 

  22. N. Mitsuda, H. Tamaki, N. Amino, T. Hosono, K. Miyai, O. Tanizawa, Risk factors for developmental disorders in infants born to women with Graves disease. Obstet. Gynecol. 80(3 Pt 1), 359–364 (1992)

    CAS  PubMed  Google Scholar 

  23. M.J. Kempers, D.A. van Tijn, A.S. van Trotsenburg, J.J. de Vijlder, B.M. Wiedijk, T. Vulsma, Central congenital hypothyroidism due to gestational hyperthyroidism: detection where prevention failed. J. Clin. Endocrinol. Metab. 88(12), 5851–5857 (2003). https://doi.org/10.1210/jc.2003-030665

    Article  CAS  PubMed  Google Scholar 

  24. L.E. Teichholz, T. Kreulen, M.V. Herman, R. Gorlin, Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am. J. Cardiol. 37(1), 7–11 (1976). https://doi.org/10.1016/0002-9149(76)90491-4

    Article  CAS  PubMed  Google Scholar 

  25. M. Zakarija, J.M. McKenzie, W.H. Hoffman, Prediction and therapy of intrauterine and late-onset neonatal hyperthyroidism. J. Clin. Endocrinol. Metab. 62(2), 368–371 (1986). https://doi.org/10.1210/jcem-62-2-368

    Article  CAS  PubMed  Google Scholar 

  26. M. Schultz, C. Kistorp, B. Langdahl, I. Raymond, P. Hildebrandt, J. Faber, N-terminal-pro-B-type natriuretic peptide in acute hyperthyroidism. Thyroid 17(3), 237–241 (2007). https://doi.org/10.1089/thy.2006.0258

    Article  CAS  PubMed  Google Scholar 

  27. J. Faber, N. Wiinberg, S. Schifter, J. Mehlsen, Haemodynamic changes following treatment of subclinical and overt hyperthyroidism. Eur. J. Endocrinol. 145(4), 391–396 (2001). https://doi.org/10.1530/eje.0.1450391

    Article  CAS  PubMed  Google Scholar 

  28. I. Klein, K. Ojamaa, Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 344(7), 501–509 (2001). https://doi.org/10.1056/nejm200102153440707

    Article  CAS  PubMed  Google Scholar 

  29. J.A. Franklyn, K. Boelaert, Thyrotoxicosis. Lancet 379(9821), 1155–1166 (2012). https://doi.org/10.1016/s0140-6736(11)60782-4

    Article  CAS  PubMed  Google Scholar 

  30. F.D. Hobbs, R.C. Davis, A.K. Roalfe, R. Hare, M.K. Davies, J.E. Kenkre, Reliability of N-terminal pro-brain natriuretic peptide assay in diagnosis of heart failure: cohort study in representative and high risk community populations. BMJ 324(7352), 1498 (2002). https://doi.org/10.1136/bmj.324.7352.1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R.S. Gardner, F. Ozalp, A.J. Murday, S.D. Robb, T.A. McDonagh, N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. Eur. Heart J. 24(19), 1735–1743 (2003). https://doi.org/10.1016/j.ehj.2003.07.005

    Article  CAS  PubMed  Google Scholar 

  32. L.C. Costello-Boerrigter, G. Boerrigter, M.M. Redfield, R.J. Rodeheffer, L.H. Urban, D.W. Mahoney, S.J. Jacobsen, D.M. Heublein, J.C. Burnett Jr, Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J. Am. Coll. Cardiol. 47(2), 345–353 (2006). https://doi.org/10.1016/j.jacc.2005.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Schultz, J. Faber, C. Kistorp, A. Jarlov, F. Pedersen, N. Wiinberg, P. Hildebrandt, N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) in different thyroid function states. Clin. Endocrinol. 60(1), 54–59 (2004). https://doi.org/10.1111/j.1365-2265.2004.01941.x

    Article  CAS  Google Scholar 

  34. M. Kohno, T. Horio, K. Yasunari, K. Yokokawa, M. Ikeda, N. Kurihara, Y. Nishizawa, H. Morii, T. Takeda, Stimulation of brain natriuretic peptide release from the heart by thyroid hormone. Metabolism 42(8), 1059–1064 (1993). https://doi.org/10.1016/0026-0495(93)90023-h

    Article  CAS  PubMed  Google Scholar 

  35. T.S. Mir, R. Laux, H.H. Hellwege, B. Liedke, C. Heinze, H. von Buelow, S. Laer, J. Weil, Plasma concentrations of aminoterminal pro atrial natriuretic peptide and aminoterminal pro brain natriuretic peptide in healthy neonates: marked and rapid increase after birth. Pediatrics 112(4), 896–899 (2003). https://doi.org/10.1542/peds.112.4.896

    Article  PubMed  Google Scholar 

  36. B. Biondi, E.A. Palmieri, G. Lombardi, S. Fazio, Effects of subclinical thyroid dysfunction on the heart. Ann. Intern. Med. 137(11), 904–914 (2002). https://doi.org/10.7326/0003-4819-137-11-200212030-00011

    Article  PubMed  Google Scholar 

  37. M. Tadic, S. Ilic, C. Cuspidi, T. Marjanovic, V. Celic, Subclinical hyperthyroidism impacts left ventricular deformation: 2D and 3D echocardiographic study. Scand. Cardiovasc. J. 49(2), 74–81 (2015). https://doi.org/10.3109/14017431.2015.1015441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Masaki Yamamoto, Department of Pediatrics, Seirei Hamamatsu General Hospital, Dr. Shinichi Nakashima, JA Shizuoka Kohseiren Enhu Hospital, and Dr. Jiro Kagawa, Fujieda Municipal General Hospital, for their valuable assistance.

Author contributions

TI designed and conducted the research, conducted the statistical analyses, interpreted the data, and drafted the initial manuscript. HU, SI, TB, and AO made substantial contributions to the acquisition of data. SI and HI contributed to the study design and provided comments on the manuscript. All authors revised and approved the final version.

Funding

This work was supported by JSPS KAKENHI Grant Number JP18K07787.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamichi Ishikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Informed consent was obtained from the parents of each newborn.

Ethics approval

The study was conducted in accordance with the ethical principles described in the Declaration of Helsinki and was approved by the local ethics committees.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, T., Uchiyama, H., Iwashima, S. et al. Hemodynamic changes in neonates born to mothers with Graves’ disease. Endocrine 72, 171–178 (2021). https://doi.org/10.1007/s12020-020-02443-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02443-w

Keywords

Navigation