Skip to main content

Advertisement

Log in

Regulation of B cell homeostasis by Ptpn22 contributes to type 1 diabetes in NOD mice

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

A coding variant in PTPN22 (C1858T) is one of the most important genetic risk factors in type 1 diabetes (T1D). The role of the PTPN22 risk allele in B cells is still incompletely understood and has not been investigated directly in T1D. This study aimed to explore the role of PTPN22 in the homeostasis of B cells and its influence in T1D.

Methods

Wild-type (WT) and Ptpn22 inducible knockdown (KD) NOD mice were treated with 200 μg/ml doxycycline at the age of 10 weeks for 1–2 months. B cell compositions in the bone marrow, peritoneal cavity and spleen were examined. The pathogenicity of Ptpn22 KD B cells was explored by adoptive cell transfer.

Results

Ptpn22 silencing increased the frequency of recirculating mature B cells in the bone marrow, decreased the frequency of B-1a cells in the peritoneal cavity and suppressed the formation of marginal zone B cells and plasma cells in the spleen. Changes in the composition of the peripheral B cell compartment caused by altered cell proliferation while rates of apoptosis were not affected. Significantly, co-transfer of Ptpn22 KD B cells with NY8.3 diabetogenic T cells diminished the frequency of diabetes in recipient NOD.scid mice compared with co-transfer of WT B cells.

Conclusions

Our study constitutes the first functional study of Ptpn22 in B cells in NOD mice. Our findings suggest that Ptpn22 variation contributes to T1D by modifying the B cell compartment and support a gain-of-function for the PTPN22 disease variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T1D:

Type 1 diabetes

IAA:

Anti-insulin antibodies

Breg:

Regulatory B cells

BCR:

B cell receptor

Dox:

Doxycycline

NOD:

Non obese diabetic

WT:

Wild type

BrdU:

Bromodeoxyuridine

MZ:

Marginal zone

FO:

Follicular

pDC:

Plasmacytoid dendtric cells

References

  1. J.A. Todd, Etiology of type 1 diabetes. Immunity 32, 457–467 (2010)

    Article  CAS  Google Scholar 

  2. L.A. DiMeglio, C. Evans-Molina, R.A. Oram, Type 1 diabetes. Lancet 391, 2449–2462 (2018)

    Article  Google Scholar 

  3. J. Diana, Y. Simoni, L. Furio, L. Beaudoin, B. Agerberth, F. Barrat, A. Lehuen, Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 19, 65–73 (2012)

    Article  Google Scholar 

  4. R.M. Hinman, J.C. Cambier, Role of B lymphocytes in the pathogenesis of type 1 diabetes. Curr. Diab. Rep. 14(11), 543 (2014)

    Article  Google Scholar 

  5. J.P. Palmer, C.M. Asplin, P. Clemons, K. Lyen, O. Tatpati, P.K. Raghu, T.L. Paquette, Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 222, 1337–1339 (1983)

    Article  CAS  Google Scholar 

  6. G. De Filippo, N. Pozzi, E. Cosentini, M. Cavalcanti, J.C. Carel, S. Tamasi, A. Franzese, C. Pignata, Increased CD5+CD19+ B lymphocytes at the onset of type 1 diabetes in children. Acta Diabetol. 34, 271–274 (1997)

    Article  Google Scholar 

  7. C. Deng, Y. Xiang, T. Tan, Z. Ren, C. Cao, G. Huang, L. Wen, Z. Zhou, Altered peripheral B-lymphocyte subsets in type 1 diabetes and latent autoimmune diabetes in adults. Diabetes Care 39, 434–440 (2016)

    Article  CAS  Google Scholar 

  8. M.D. Pescovitz, C.J. Greenbaum, H. Krause-Steinrauf, D.J. Becker, S.E. Gitelman, R. Goland, P.A. Gottlieb, J.B. Marks, P.F. McGee, A.M. Moran, P. Raskin, H. Rodriguez, D.A. Schatz, D. Wherrett, D.M. Wilson, J.M. Lachin, J.S. Skyler, Type 1 diabetes Trialnet anti-CD20 Study Group, rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–2152 (2009)

    Article  CAS  Google Scholar 

  9. M.D. Pescovitz, C.J. Greenbaum, B. Bundy, D.J. Becker, S.E. Gitelman, R. Goland, P.A. Gottlieb, J.B. Marks, A. Moran, P. Raskin, H. Rodriguez, D.A. Schatz, D.K. Wherrett, D.M. Wilson, J.P. Krischer, J.S. Skyler, Type 1 diabetes TrialNet Anti-CD20 Study Group, B-lymphocyte depletion with rituximab and beta-cell function: two-year results. Diabetes Care 37, 453–459 (2014)

    Article  CAS  Google Scholar 

  10. D.V. Serreze, H.D. Chapman, D.S. Varnum, M.S. Hanson, P.C. Reifsnyder, S.D. Richard, S.A. Fleming, E.H. Leiter, L.D. Shultz, B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J. Exp. Med. 184, 2049–2053 (1996)

    Article  CAS  Google Scholar 

  11. N. Bottini, L. Musumeci, A. Alonso, S. Rahmouni, K. Nika, M. Rostamkhani, J. MacMurray, G.F. Meloni, P. Lucarelli, M. Pellecchia, G.S. Eisenbarth, D. Comings, T. Mustelin, A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337–338 (2004)

    Article  CAS  Google Scholar 

  12. T. Vang, M. Congia, M.D. Macis, L. Musumeci, V. Orrú, P. Zavattari, K. Nika, L. Tautz, K. Taskén, F. Cucca, T. Mustelin, N. Bottini, Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005)

    Article  CAS  Google Scholar 

  13. X. Dai, R.G. James, T. Habib, S. Singh, S. Jackson, S. Khim, R.T. Moon, D. Liggitt, A. Wolf-Yadlin, J.H. Buckner, D.J. Rawlings, A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J. Clin. Investig. 123, 2024–2036 (2013)

    Article  CAS  Google Scholar 

  14. L. Menard, D. Saadoun, I. Isnardi, Y.S. Ng, G. Meyers, C. Massad, C. Price, C. Abraham, R. Motaghedi, J.H. Buckner, P.K. Gregersen, E. Meffre, The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Investig. 121, 3635–3644 (2011)

    Article  CAS  Google Scholar 

  15. X. Lin, S. Pelletier, S. Gingras, S. Rigaud, C.J. Maine, K. Marquardt, Y.D. Dai, K. Sauer, A.R. Rodriguez, G. Martin, S. Kupriyanov, L. Jiang, L. Yu, D.R. Green, L.A. Sherman, CRISPR-Cas9-mediated modification of the NOD mouse genome with Ptpn22R619W mutation increases autoimmune diabetes. Diabetes 65, 2134–2138 (2016)

    Article  CAS  Google Scholar 

  16. T. Habib, A. Funk, M. Rieck, A. Brahmandam, X. Dai, A.K. Panigrahi, E.T. Luning Prak, A. Meyer-Bahlburg, S. Sanda, C. Greenbaum, D.J. Rawlings, J.H. Buckner, Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J. Immunol. 188, 487–496 (2012)

    Article  CAS  Google Scholar 

  17. G. Metzler, X. Dai, C.D. Thouvenel, S. Khim, T. Habib, J.H. Buckner, D.J. Rawlings, The autoimmune risk variant PTPN22 C1858T alters B cell tolerance at discrete checkpoints and differentially shapes the naive repertoire. J. Immunol. 199, 2249–2260 (2017)

    Article  CAS  Google Scholar 

  18. P. Zheng, S. Kissler, PTPN22 silencing in the NOD model indicates the type 1 diabetes-associated allele is not a loss-of-function variant. Diabetes 62, 896–904 (2013)

    Article  CAS  Google Scholar 

  19. C. Schuster, K.D. Gerold, K. Schober, L. Probst, K. Boerner, M.J. Kim, A. Ruckdeschel, T. Serwold, S. Kissler, The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity 42, 942–952 (2015)

    Article  CAS  Google Scholar 

  20. P. Schneider, H. Takatsuka, A. Wilson, F. Mackay, A. Tardivel, S. Lens, T.G. Cachero, D. Finke, F. Beermann, J. Tschopp, Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J. Exp. Med. 194, 1691–1697 (2001)

    Article  CAS  Google Scholar 

  21. J.N. Schickel, M. Kuhny, A. Baldo, J.M. Bannock, C. Massad, H. Wang, N. Katz, T. Oe, L. Menard, P. Soulas-Sprauel, T. Strowig, R. Flavell, E. Meffre, PTPN22 inhibition resets defective human central B cell tolerance. Sci. Immunol. 1, f7153 (2016)

    Article  Google Scholar 

  22. S.B. Hartley, J. Crosbie, R. Brink, A.B. Kantor, A. Basten, C.C. Goodnow, Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 353, 765–769 (1991)

    Article  CAS  Google Scholar 

  23. M.S. Anderson, J.A. Bluestone, The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol. 23, 447–485 (2005)

    Article  CAS  Google Scholar 

  24. G.J. Tsay, M. Zouali, The interplay between innate-like B cells and other cell types in autoimmunity. Front Immunol. 9, 1064 (2018)

    Article  Google Scholar 

  25. J.J. Kenny, A.M. Stall, D.G. Sieckmann et al. Receptor-mediated elimination of phosphocholine-specific B cells in x-linked immune-deficient mice. J. Immunol. 146, 2568–2577 (1991)

    CAS  PubMed  Google Scholar 

  26. L. Mandik-Nayak, J. Racz, B.P. Sleckman, M.C. Lamers, F.D. Finkelman, L. Finch, D.L. Longo, Autoreactive marginal zone B cells are spontaneously activated but lymph node B cells require T cell help. J. Exp. Med. 203, 1985–1998 (2006)

    Article  CAS  Google Scholar 

  27. K. Attanavanich, J.F. Kearney, Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J. Immunol. 172, 803–811 (2004)

    Article  CAS  Google Scholar 

  28. E. Marino, M. Batten, J. Groom, S. Walters, D. Liuwantara, F. Mackay, S.T. Grey, Marginal-zone B-cells of nonobese diabetic mice expand with diabetes onset, invade the pancreatic lymph nodes, and present autoantigen to diabetogenic T-cells. Diabetes 57, 395–404 (2008)

    Article  CAS  Google Scholar 

  29. E. Marino, J.L. Richards, K.H. McLeod, D. Stanley, Y.A. Yap, J. Knight, C. McKenzie, J. Kranich, A.C. Oliveira, F.J. Rossello, B. Krishnamurthy, C.M. Nefzger, L. Macia, A. Thorburn, A.G. Baxter, G. Morahan, L.H. Wong, J.M. Polo, R.J. Moore, T.J. Lockett, J.M. Clarke, D.L. Topping, L.C. Harrison, C.R. Mackay, Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017)

    Article  CAS  Google Scholar 

  30. P. Zheng, Z. Li, Z. Zhou, Gut microbiome in type 1 diabetes: a comprehensive review. Diabetes Metabol. Res. Rev. 34, e3043 (2018)

    Article  Google Scholar 

  31. L.I. Pao, K.P. Lam, J.M. Henderson, J.L. Kutok, M. Alimzhanov, L. Nitschke, M.L. Thomas, B.G. Neel, K. Rajewsky, B cell-specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity 27, 35–48 (2007)

    Article  CAS  Google Scholar 

  32. J. Corte-Real, N. Duarte, L. Tavares, C. Penha-Gonçalves, Innate stimulation of B1a cells enhances the autoreactive IgM repertoire in the NOD mouse: implications for type 1 diabetes. Diabetologia 55, 1761–1772 (2012)

    Article  CAS  Google Scholar 

  33. P.L. Kendall, E.J. Woodward, C. Hulbert, J.W. Thomas, Peritoneal B cells govern the outcome of diabetes in non-obese diabetic mice. Eur. J. Immunol. 34, 2387–2395 (2004)

    Article  CAS  Google Scholar 

  34. R.A. Smerdon, M. Peakman, M.J. Hussain et al. CD5+ B-cells at the onset of type I diabetes and in the prediabetic period. Diabetes Care 17, 657–664 (1994)

    Article  CAS  Google Scholar 

  35. C. Hulbert, B. Riseili, M. Rojas, J.W. Thomas, B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J. Immunol. 167, 5535–5538 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 81670716, 81500600), Hunan Natural Science Fund for Excellent Young Scholars (Grant No. 2019JJ30036), and the Graduate innovation project of Central South University (Grant No. 2018zzts921). The authors declare no conflicts of interest.

Author contributions

All authors have read and approved the final manuscript. P.Z., L.J., and Z.Z. discussed, designed the study and critically edited the manuscript. X.S. and F.S. conducted the experiments, analysed data, and wrote the manuscript. Z.L., L.K., and J.L. contributed to the experiments and discussion. S.K. provided P2 transgenic mice and critically edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguang Zhou, Lijing Jia or Peilin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All applicable institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Shao, F., Li, Z. et al. Regulation of B cell homeostasis by Ptpn22 contributes to type 1 diabetes in NOD mice. Endocrine 67, 535–543 (2020). https://doi.org/10.1007/s12020-019-02120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02120-7

Keywords

Navigation