Skip to main content

Advertisement

Log in

Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

As the treatment regimens such as metformin could confound the correlation between type 2 diabetes (T2D) and gut microbiome, we should revisit the relationship between gut microbiota and T2D patients who are not currently treated with metformin.

Methods

The study recruited 65 T2D patients: 49 with and 16 without diabetic complications, and 35 healthy controls. We sequenced the 16S rRNA V3-V4 region of gut microbiota and detected metabolites based on liquid chromatography mass spectrometry (LC/MS) and gas chromatography mass spectrometry (GC/MS) in faecal samples.

Results

The composition of both the gut microbiota and faecal metabolites changed significantly with T2D patients. The abundance of Proteobacteria and the ratio of Firmicutes/Bacteroidetes were higher in T2D patients than healthy subjects, and the short chain fatty acids (SCFAs), bile acids and lipids of T2D patients were significantly disordered. Moreover, the abundances of certain SCFA-producing bacteria (Lachnospiraceae and Ruminococcaceae etc.) were significantly increased in T2D patients, while the faecal SCFAs concentrations were significantly decreased. It’s suggested that the role of SCFA-producing bacteria was not simply to produce SCFAs. Then we identified 44 microbial modules to explore the correlations between the gut microbiota and metabolic traits. Specially, most modules including certain SCFA-producing bacteria were comprehensively correlated to body mass index, the levels of blood glucose, blood pressure, blood cholesterol and faecal bile acids and lipids.

Conclusions

Our study identified the relationships between the gut microbiota and faecal metabolites, and provided a resource for future studies to understand host–gut microbiota interactions in T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.V. Lynch, O. Pedersen, The human intestinal microbiome in health and disease. New Engl. J. Med. 375, 2369–2379 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. W.M. de Vos, M. Nieuwdorp, Genomics: a gut prediction. Nature 498, 48–49 (2013)

    Article  PubMed  CAS  Google Scholar 

  3. K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. Krogh Pedersen, M. Arumugam, K. Kristiansen, A.Yvonne Voigt, H. Vestergaard, R. Hercog, P. Igor Costea, J. Roat Kultima, J. Li, T. Jørgensen, F. Levenez, J. Dore; H.I.T.c. Meta, H.Bjørn Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S.Dusko Ehrlich, P. Bork, O. Pedersen, Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. Wu, E. Esteve, V. Tremaroli, M.T. Khan, R. Caesar, L. Manneras-Holm, M. Stahlman, L.M. Olsson, M. Serino, M. Planas-Felix, G. Xifra, J.M. Mercader, D. Torrents, R. Burcelin, W. Ricart, R. Perkins, J.M. Fernandez-Real, F. Backhed, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. E. Org, Y. Blum, S. Kasela, M. Mehrabian, J. Kuusisto, A.J. Kangas, P. Soininen, Z. Wang, M. Ala-Korpela, S.L. Hazen, M. Laakso, A.J. Lusis, Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 18, 70 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. F. Brial, A. Le Lay, M.E. Dumas, D. Gauguier, Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol. Life Sci. 75(21), 3977–3990 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. E.E. Canfora, J.W. Jocken, E.E. Blaak, Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar, A.E. Feldstein, E.B. Britt, X. Fu, Y.M. Chung, Y. Wu, P. Schauer, J.D. Smith, H. Allayee, W.H. Tang, J.A. DiDonato, A.J. Lusis, S.L. Hazen, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H.K. Pedersen, V. Gudmundsdottir, H.B. Nielsen, T. Hyotylainen, T. Nielsen, B.A. Jensen, K. Forslund, F. Hildebrand, E. Prifti, G. Falony, E. Le Chatelier, F. Levenez, J. Dore, I. Mattila, D.R. Plichta, P. Poho, L.I. Hellgren, M. Arumugam, S. Sunagawa, S. Vieira-Silva, T. Jorgensen, J.B. Holm, K. Trost, H.I.T.C. Meta, K. Kristiansen, S. Brix, J. Raes, J. Wang, T. Hansen, P. Bork, S. Brunak, M. Oresic, S.D. Ehrlich, O. Pedersen, Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013)

    Article  PubMed  CAS  Google Scholar 

  11. D. Dodd, M.H. Spitzer, W. Van Treuren, B.D. Merrill, A.J. Hryckowian, S.K. Higginbottom, A. Le, T.M. Cowan, G.P. Nolan, M.A. Fischbach, J.L. Sonnenburg, A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. Liu, J. Hong, X. Xu, Q. Feng, D. Zhang, Y. Gu, J. Shi, S. Zhao, W. Liu, X. Wang, H. Xia, Z. Liu, B. Cui, P. Liang, L. Xi, J. Jin, X. Ying, X. Wang, X. Zhao, W. Li, H. Jia, Z. Lan, F. Li, R. Wang, Y. Sun, M. Yang, Y. Shen, Z. Jie, J. Li, X. Chen, H. Zhong, H. Xie, Y. Zhang, W. Gu, X. Deng, B. Shen, X. Xu, H. Yang, G. Xu, Y. Bi, S. Lai, J. Wang, L. Qi, L. Madsen, J. Wang, G. Ning, K. Kristiansen, W. Wang, Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med 23, 859–868 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. A. Koh, A. Molinaro, M. Stahlman, M.T. Khan, C. Schmidt, L. Manneras-Holm, H. Wu, A. Carreras, H. Jeong, L.E. Olofsson, P.O. Bergh, V. Gerdes, A. Hartstra, M. de Brauw, R. Perkins, M. Nieuwdorp, G. Bergstrom, F. Backhed, Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961 e917 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. American diabetes association, Standards of medical care in diabetes–2014. Diabetes Care 37(Suppl 1), S14–S80 (2014)

  15. American diabetes association, Standards of medical care in diabetes–2011. Diabetes Care 34(Suppl 1), S11–S61 (2011)

  16. R.C. Edgar, Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Turnbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C. Lozupone, R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ. Microbiol. 71, 8228–8235 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D. McDonald, M.N. Price, J. Goodrich, E.P. Nawrocki, T.Z. DeSantis, A. Probst, G.L. Andersen, R. Knight, P. Hugenholtz, An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. M.G. Langille, J. Zaneveld, J.G. Caporaso, D. McDonald, D. Knights, J.A. Reyes, J.C. Clemente, D.E. Burkepile, R.L. Vega Thurber, R. Knight, R.G. Beiko, C. Huttenhower, Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D.H. Parks, G.W. Tyson, P. Hugenholtz, R.G. Beiko, STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Li, Y. Peng, P. Ma, H. Yang, H. Xiong, M. Wang, C. Peng, P. Tu, X. Li, Antidepressant-like effects of cistanche tubulosa extract on chronic unpredictable stress rats through restoration of gut microbiota homeostasis. Front. Pharmacol. 9, 967 (2018)

  23. R. Wang, Y. Peng, H. Meng, X. Li, Protective effect of polysaccharides fractions from Sijunzi decoction in reserpine-induced spleen deficiency rats. RSC Adv. 6, 60657–60665 (2016)

    Article  CAS  Google Scholar 

  24. H. Cao, H. Huang, W. Xu, D. Chen, J. Yu, J. Li, L. Li, Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography–mass spectrometry. Analytica Chim. Acta 691, 68–75 (2011)

    Article  CAS  Google Scholar 

  25. H. Liu, X. Chen, X. Hu, H. Niu, R. Tian, H. Wang, H. Pang, L. Jiang, B. Qiu, X. Chen, Y. Zhang, Y. Ma, S. Tang, H. Li, S. Feng, S. Zhang, C. Zhang, Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  26. D.S. Wishart, Y.D. Feunang, A. Marcu, A.C. Guo, K. Liang, R. Vazquez-Fresno, T. Sajed, D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour, M. Berjanskii, S. Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-Cayuela, Y. Liu, R. Mandal, V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach, A. Scalbert, HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. M. Sud, E. Fahy, D. Cotter, A. Brown, E.A. Dennis, C.K. Glass, A.H. Merrill Jr., R.C. Murphy, C.R. Raetz, D.W. Russell, S. Subramaniam, LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. C.A. Smith, G. O’Maille, E.J. Want, C. Qin, S.A. Trauger, T.R. Brandon, D.E. Custodio, R. Abagyan, G. Siuzdak, METLIN: a metabolite mass spectral database. Therapeutic Drug Monit. 27, 747–751 (2005)

    Article  CAS  Google Scholar 

  29. T. Wu, G. Xie, Y. Ni, T. Liu, M. Yang, H. Wei, W. Jia, G. Ji, Serum metabolite signatures of type 2 diabetes mellitus complications. J. Proteome Res. 14, 447–456 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008)

    Article  CAS  Google Scholar 

  31. P. Langfelder, B. Zhang, S. Horvath, Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24, 719–720 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, Y. Peng, D. Zhang, Z. Jie, W. Wu, Y. Qin, W. Xue, J. Li, L. Han, D. Lu, P. Wu, Y. Dai, X. Sun, Z. Li, A. Tang, S. Zhong, X. Li, W. Chen, R. Xu, M. Wang, Q. Feng, M. Gong, J. Yu, Y. Zhang, M. Zhang, T. Hansen, G. Sanchez, J. Raes, G. Falony, S. Okuda, M. Almeida, E. LeChatelier, P. Renault, N. Pons, J.M. Batto, Z. Zhang, H. Chen, R. Yang, W. Zheng, S. Li, H. Yang, J. Wang, S.D. Ehrlich, R. Nielsen, O. Pedersen, K. Kristiansen, J. Wang, A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. F.H. Karlsson, V. Tremaroli, I. Nookaew, G. Bergstrom, C.J. Behre, B. Fagerberg, J. Nielsen, F. Backhed, Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. W. Feng, H. Ao, C. Peng, D. Yan, Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol. Res. 142, 176–191 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. J. Fernandes, W. Su, S. Rahat-Rozenbloom, T.M. Wolever, E.M. Comelli, Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4, e121 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J.A. Vogt, T.M. Wolever, Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon. J. Nutr. 133, 3145–3148 (2003)

    Article  CAS  PubMed  Google Scholar 

  37. A.V. Hartstra, K.E. Bouter, F. Backhed, M. Nieuwdorp, Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38, 159–165 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. I. Moreno-Indias, L. Sanchez-Alcoholado, E. Garcia-Fuentes, F. Cardona, M.I. Queipo-Ortuno, F.J. Tinahones, Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am. J. Transl. Res. 8, 5672–5684 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. L. Sanchez-Alcoholado, D. Castellano-Castillo, L. Jordan-Martinez, I. Moreno-Indias, P. Cardila-Cruz, D. Elena, A.J. Munoz-Garcia, M.I. Queipo-Ortuno, M. Jimenez-Navarro, Role of gut microbiota on cardio-metabolic parameters and immunity in coronary artery disease patients with and without type-2 diabetes mellitus. Front Microbiol. 8, 1936 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  40. J.P. Furet, L.C. Kong, J. Tap, C. Poitou, A. Basdevant, J.L. Bouillot, D. Mariat, G. Corthier, J. Dore, C. Henegar, S. Rizkalla, K. Clement, Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Li, F. Zhao, Y. Wang, J. Chen, J. Tao, G. Tian, S. Wu, W. Liu, Q. Cui, B. Geng, W. Zhang, R. Weldon, K. Auguste, L. Yang, X. Liu, L. Chen, X. Yang, B. Zhu, J. Cai, Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Z. Jie, H. Xia, S.L. Zhong, Q. Feng, S. Li, S. Liang, H. Zhong, Z. Liu, Y. Gao, H. Zhao, D. Zhang, Z. Su, Z. Fang, Z. Lan, J. Li, L. Xiao, J. Li, R. Li, X. Li, F. Li, H. Ren, Y. Huang, Y. Peng, G. Li, B. Wen, B. Dong, J.Y. Chen, Q.S. Geng, Z.W. Zhang, H. Yang, J. Wang, J. Wang, X. Zhang, L. Madsen, S. Brix, G. Ning, X. Xu, X. Liu, Y. Hou, H. Jia, K. He, K. Kristiansen, The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. K.H. Allin, V. Tremaroli, R. Caesar, B.A.H. Jensen, M.T.F. Damgaard, M.I. Bahl, T.R. Licht, T.H. Hansen, T. Nielsen, T.M. Dantoft, A. Linneberg, T. Jorgensen, H. Vestergaard, K. Kristiansen, P.W. Franks, I.-D. consortium, T. Hansen, F. Backhed, O. Pedersen, Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810–820 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  44. W.H. Tang, Z. Wang, X.S. Li, Y. Fan, D.S. Li, Y. Wu, S.L. Hazen, Increased trimethylamine n-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin. Chem. 63, 297–306 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. F.P. Martin, Y. Wang, N. Sprenger, I.K. Yap, T. Lundstedt, P. Lek, S. Rezzi, Z. Ramadan, P. van Bladeren, L.B. Fay, S. Kochhar, J.C. Lindon, E. Holmes, J.K. Nicholson, Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4, 157 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. X.Z. Zhang, S.X. Zheng, Y.M. Hou, A. Non-Targeted, Liquid chromatographic-mass spectrometric metabolomics approach for association with coronary artery disease: an identification of biomarkers for depiction of underlying biological mechanisms. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 23, 613–622 (2017)

    CAS  Google Scholar 

  47. J.S. Escobar, B. Klotz, B.E. Valdes, G.M. Agudelo, The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 14, 311 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  48. A. Wahlstrom, S.I. Sayin, H.U. Marschall, F. Backhed, Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016)

    Article  PubMed  CAS  Google Scholar 

  49. M.S. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, V. Touche, S.I. Sayin, A. Perino, C.A. Brighton, Y. Sebti, J. Kluza, O. Briand, H. Dehondt, E. Vallez, E. Dorchies, G. Baud, V. Spinelli, N. Hennuyer, S. Caron, K. Bantubungi, R. Caiazzo, F. Reimann, P. Marchetti, P. Lefebvre, F. Backhed, F.M. Gribble, K. Schoonjans, F. Pattou, A. Tailleux, B. Staels, S. Lestavel, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015)

    Article  PubMed  Google Scholar 

  50. C. Thomas, A. Gioiello, L. Noriega, A. Strehle, J. Oury, G. Rizzo, A. Macchiarulo, H. Yamamoto, C. Mataki, M. Pruzanski, R. Pellicciari, J. Auwerx, K. Schoonjans, TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. O. Chavez-Talavera, A. Tailleux, P. Lefebvre, B. Staels, Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694 e1673 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. S.A. Joyce, J. MacSharry, P.G. Casey, M. Kinsella, E.F. Murphy, F. Shanahan, C. Hill, C.G. Gahan, Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 111, 7421–7426 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. G. Kakiyama, W.M. Pandak, P.M. Gillevet, P.B. Hylemon, D.M. Heuman, K. Daita, H. Takei, A. Muto, H. Nittono, J.M. Ridlon, M.B. White, N.A. Noble, P. Monteith, M. Fuchs, L.R. Thacker, M. Sikaroodi, J.S. Bajaj, Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58, 949–955 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. X. Zheng, F. Huang, A. Zhao, S. Lei, Y. Zhang, G. Xie, T. Chen, C. Qu, C. Rajani, B. Dong, D. Li, W. Jia, Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol. 15, 120 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. M.A. Sze, P.D. Schloss, Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7, e01018–01016 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  56. F. Liu, Z. Ling, Y. Xiao, Q. Yang, B. Wang, L. Zheng, P. Jiang, L. Li, W. Wang, Alterations of urinary microbiota in type 2 diabetes mellitus with hypertension and/or hyperlipidemia. Front Physiol. 8, 126 (2017)

    PubMed  PubMed Central  Google Scholar 

  57. K. Makki, E.C. Deehan, J. Walter, F. Bäckhed, The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 23, 705–715 (2018)

    Article  CAS  PubMed  Google Scholar 

  58. A.V. Hartstra, M. Nieuwdorp, H. Herrema, Interplay between gut microbiota, its metabolites and human metabolism: dissecting cause from consequence. Trends Food Sci. Technol. 57, 233–243 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to all subjects for agreeing to participate in this study. We thank Huiling Song, Fudun Sun, Xianghua Zhuang and Aili Sun for professional assistance of T2D and diabetic complications register. We also thank Instrumental Analysis Center of SJTU for help with LC/MS and GC/MS analysis and NovelBio Bio-Pharm Technology Co., Ltd for help with 16S rRNA sequencing.

Funding

This study was funded by the National Natural Science Foundation of China (No. 81673588).

Author contributions

X.L., H.L. and L.Z. conceived and designed the study. Material preparation and data collection were performed by L.Z., H.L. and S.C., L.Z., Y.P. and Y.Z. analysed and interpreted the data. The first draft of the manuscript was written by L.Z. and authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the Committee on the Ethics of the Second Hospital of Shandong University (reference number: KYLL-2015(KJ)P-0103) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants or their legal guardians included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Lou, H., Peng, Y. et al. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine 66, 526–537 (2019). https://doi.org/10.1007/s12020-019-02103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02103-8

Keywords

Navigation