Skip to main content

Advertisement

Log in

Heterogenous nature of gene expression patterns in BRAF-like papillary thyroid carcinomas with BRAFV600E

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Papillary thyroid cancers (PTCs) are the most common type of thyroid cancers, in which BRAFV600E is the most prevalent driver mutation. It is known that BRAFV600E-positive PTCs are clinically and molecularly heterogenous in terms of aggressiveness and prognosis. The molecular mechanisms of this heterogeneity were evaluated.

Methods

The publicly available RNA-seq data for 26 classical (c) and 5 follicular variant (fv) PTCs with BRAFV600E mutation and the BRAF-like expression signature in the BRAFV600E-RAS score (BRS) and their respective normal adjacent tissues were downloaded, and analyzed for differentially expressed genes (DEGs). The DEGs were then analyzed with the Gene Ontology annotation and the KEGG pathway dataset.

Results

We found four lines of evidence for heterogeneity of cPTCs. First, the cluster dendrogram and principle component analyses could not completely distinguish the cancer tissues from normal tissues. Second, the DEGs identified in each sample were highly diverse from one another. Third, although the DEGs were enriched in many terms containing the word “extracellular” (“extracellular region”, “extracellular space”, and so on) when analyzed as groups, the degree of this enrichment was variable when analyzed individually. Fourth, there are only a few intersections in the over-/underexpressed genes annotated with the terms containing the word “extracellular” among the samples examined. Essentially same results were obtained with BRAF-like, fvPTCs with BRAFV600E. Nevertheless, some frequently over-/underexpressed genes were detected, of which LIPH (lipase H) expression was found to be prognostic and its high expression was favorable for PTCs.

Conclusion

Groups of BRAF-like, BRAFV600E-positive cPTCs and fvPTCs that are homogenous in regard to histopathology, driver mutation and BRS were found to be highly heterogenous in terms of gene expression patterns. Yet, among the genes that were annotated with the terms containing the word “extracellular” and frequently over-/underexpressed, LIPH is a favorable prognostic marker for PTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. T. Carling, R. Udelsman, Thyroid cancer. Annu Rev. Med 65, 125–137 (2014). https://doi.org/10.1146/annurev-med-061512-105739

    Article  CAS  PubMed  Google Scholar 

  2. D. Tumino, F. Frasca, K. Newbold, Updates on the management of advanced, metastatic, and radioiodine refractory differentiated thyroid cancer. Front. Endocrinol. 8, 312 (2017). https://doi.org/10.3389/fendo.2017.00312

    Article  Google Scholar 

  3. B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26(1), 1–133 (2016). https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  4. The Cancer Genome Atlas Research, N., Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3), 676–690 (2014). https://doi.org/10.1016/j.cell.2014.09.050

    Article  CAS  Google Scholar 

  5. G. Riesco-Eizaguirre, P. Santisteban, Endocrine tumours: advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome. Eur. J. Endocrinol. 175(5), R203–R217 (2016). https://doi.org/10.1530/eje-16-0202

    Article  CAS  PubMed  Google Scholar 

  6. K. Kim, S. Jeon, T. M. Kim, C. K. Jung, Immune gene signature delineates a subclass of papillary thyroid cancer with unfavorable clinical outcomes. Cancers (Basel) 10(12) (2018). https://doi.org/10.3390/cancers10120494

    Article  CAS  PubMed Central  Google Scholar 

  7. S.K. Yoo, S. Lee, S.J. Kim, H.G. Jee, B.A. Kim, H. Cho, Y.S. Song, S.W. Cho, J.K. Won, J.Y. Shin, J. Park do, J.I. Kim, K.E. Lee, Y.J. Park, J.S. Seo, Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet 12(8), e1006239 (2016). https://doi.org/10.1371/journal.pgen.1006239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S.W. Wingett, S. Andrews, FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7, 1338 (2018). https://doi.org/10.12688/f1000research.15931.2

    Article  PubMed  PubMed Central  Google Scholar 

  9. D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12(4), 357–360 (2015). https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Liao, G.K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923–930 (2014). https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  11. M.D. Robinson, D.J. McCarthy, G.K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010). https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  12. J. Han, M. Chen, Y. Wang, B. Gong, T. Zhuang, L. Liang, H. Qiao, Identification of biomarkers based on differentially expressed genes in papillary thyroid carcinoma. Sci. Rep. 8(1), 9912 (2018). https://doi.org/10.1038/s41598-018-28299-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Huang, M. Prasad, W.J. Lemon, H. Hampel, F.A. Wright, K. Kornacker, V. LiVolsi, W. Frankel, R.T. Kloos, C. Eng, N.S. Pellegata, A. de la Chapelle, Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc. Natl. Acad. Sci. USA 98(26), 15044–15049 (2001). https://doi.org/10.1073/pnas.251547398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y. Xu, J. Chen, Z. Yang, L. Xu, Identification of RNA expression profiles in thyroid cancer to construct a competing endogenous RNA (ceRNA) network of mRNAs, long Noncoding RNAs (lncRNAs), and microRNAs (miRNAs). Med. Sci. Monit.: Int. Med. J. Exp. Clin. Res. 25, 1140–1154 (2019). https://doi.org/10.12659/msm.912450

    Article  Google Scholar 

  15. I. Reyes, N. Reyes, R. Suriano, C. Iacob, N. Suslina, A. Policastro, A. Moscatello, S. Schantz, R.K. Tiwari, J. Geliebter, Gene expression profiling identifies potential molecular markers of papillary thyroid carcinoma. Cancer Biomark. 24(1), 71–83 (2019). https://doi.org/10.3233/cbm-181758

    Article  CAS  PubMed  Google Scholar 

  16. L. Liu, C. He, Q. Zhou, G. Wang, Z. Lv, J. Liu, Identification of key genes and pathways of thyroid cancer by integrated bioinformatics analysis. J. Cell. Physiol. (2019). https://doi.org/10.1002/jcp.28932

    Article  CAS  PubMed  Google Scholar 

  17. I. Landa, T. Ibrahimpasic, L. Boucai, R. Sinha, J.A. Knauf, R.H. Shah, S. Dogan, J.C. Ricarte-Filho, G.P. Krishnamoorthy, B. Xu, N. Schultz, M.F. Berger, C. Sander, B.S. Taylor, R. Ghossein, I. Ganly, J.A. Fagin, Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 126(3), 1052–1066 (2016). https://doi.org/10.1172/jci85271

    Article  PubMed  PubMed Central  Google Scholar 

  18. O.L. Griffith, A. Melck, S.J. Jones, S.M. Wiseman, Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J. Clin. Oncol. 24(31), 5043–5051 (2006). https://doi.org/10.1200/jco.2006.06.7330

    Article  CAS  PubMed  Google Scholar 

  19. M.C. Barros-Filho, F.A. Marchi, C.A. Pinto, S.R. Rogatto, L.P. Kowalski, High diagnostic accuracy based on CLDN10, HMGA2, and LAMB3 transcripts in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 100(6), E890–E899 (2015). https://doi.org/10.1210/jc.2014-4053

    Article  PubMed  Google Scholar 

  20. H.S. Kim, D.H. Kim, J.Y. Kim, N.H. Jeoung, I.K. Lee, J.G. Bong, E.D. Jung, Microarray analysis of papillary thyroid cancers in Korean. Korean J. Intern. Med. 25(4), 399–407 (2010). https://doi.org/10.3904/kjim.2010.25.4.399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Q.X. Wang, E.D. Chen, Y.F. Cai, Q. Li, Y.X. Jin, W.X. Jin, Y.H. Wang, Z.C. Zheng, L. Xue, O.C. Wang, X.H. Zhang, A panel of four genes accurately differentiates benign from malignant thyroid nodules. J. Exp. Clin. Cancer Res. 35(1), 169 (2016). https://doi.org/10.1186/s13046-016-0447-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S.P. Cheng, M.J. Chen, M.N. Chien, C.H. Lin, J.J. Lee, C.L. Liu, Overexpression of teneurin transmembrane protein 1 is a potential marker of disease progression in papillary thyroid carcinoma. Clin. Exp. Med. 17(4), 555–564 (2017). https://doi.org/10.1007/s10238-016-0445-y

    Article  CAS  PubMed  Google Scholar 

  23. D. Luo, H. Chen, P. Lu, X. Li, M. Long, X. Peng, M. Huang, K. Huang, S. Lin, L. Tan, Y. Zhu, Z. Chen, N. Ouyang, H. Li, CHI3L1 overexpression is associated with metastasis and is an indicator of poor prognosis in papillary thyroid carcinoma. Cancer Biomark. 18(3), 273–284 (2017). https://doi.org/10.3233/cbm-160255

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhang, Z. Zhang, J. Ma, J. Pu, P. Hou, Q. Yang, High-accuracy detection of preoperative thyroid nodules using combination of BRAF(V600E) mutation and TMPRSS4 mRNA level. Arch. Med. Res. 49(6), 365–372 (2018). https://doi.org/10.1016/j.arcmed.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  25. J. Tang, D. Kong, Q. Cui, K. Wang, D. Zhang, Q. Yuan, X. Liao, Y. Gong, G. Wu, Bioinformatic analysis and identification of potential prognostic microRNAs and mRNAs in thyroid cancer. PeerJ 6, e4674 (2018). https://doi.org/10.7717/peerj.4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. H. Ishimine, R. Zhou, K. Sumitomo, Y. Ito, Y. Seki, Y. Yoshida, A. Kurisaki, Lipase member H frequently overexpressed in human esophageal adenocarcinomas. Tumour Biol. 37(2), 2075–2081 (2016). https://doi.org/10.1007/s13277-015-3985-y

    Article  CAS  PubMed  Google Scholar 

  27. Y. Li, X. Zhou, Q. Zhang, E. Chen, Y. Sun, D. Ye, O. Wang, X. Zhang, J. Lyu, Lipase member H is a downstream molecular target of hypoxia inducible factor-1alpha and promotes papillary thyroid carcinoma cell migration in BCPAP and KTC-1 cell lines. Cancer Manag. Res. 11, 931–941 (2019). https://doi.org/10.2147/cmar.S183355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Sponziello, F. Rosignolo, M. Celano, V. Maggisano, V. Pecce, R.F. De Rose, G.E. Lombardo, C. Durante, S. Filetti, G. Damante, D. Russo, S. Bulotta, Fibronectin-1 expression is increased in aggressive thyroid cancer and favors the migration and invasion of cancer cells. Mol. Cell. Endocrinol. 431, 123–132 (2016). https://doi.org/10.1016/j.mce.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  29. Y. Jin, W. Jin, Z. Zheng, E. Chen, Q. Wang, Y. Wang, O. Wang, X. Zhang, GABRB2 plays an important role in the lymph node metastasis of papillary thyroid cancer. Biochem. Biophys. Res. Commun. 492(3), 323–330 (2017). https://doi.org/10.1016/j.bbrc.2017.08.114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Nagayama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagayama, Y., Mishima, H. Heterogenous nature of gene expression patterns in BRAF-like papillary thyroid carcinomas with BRAFV600E. Endocrine 66, 607–613 (2019). https://doi.org/10.1007/s12020-019-02063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02063-z

Keywords

Navigation