Skip to main content

Advertisement

Log in

Duodeno-jejunal bypass restores β-cell hypersecretion and islet hypertrophy in western diet obese rats

  • Endocrine Surgery
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Duodeno-jejunal bypass (DJB) operation improves glucose homeostasis in morbid obesity, independently of weight loss or reductions in adiposity, through mechanisms not yet fully elucidated. Herein, we evaluated the effects of DJB upon glucose homeostasis, endocrine pancreatic morphology, and β-cell responsiveness to potentiating agents of cholinergic and cAMP pathways, in western diet (WD) obese rats, at 2 months after operation.

Methods

From 8 to 18 weeks of age male Wistar rats fed on a WD. After this period, a sham (WD Sham group) or DJB (WD DJB) operations were performed. At 2 months after operation glucose homeostasis was verified.

Results

Body weight was similar between WD DJB and WD Sham rats, but WD DJB rats showed a decrease in Lee index, retroperitoneal and perigonadal fat pads. Also, WD DJB rats displayed reduced fasting glycemia and insulinemia, and increased insulin-induced Akt activation in the gastrocnemius. Islets from WD DJB rats secreted less amounts of insulin, in response to activators of the cholinergic (carbachol and phorbol 12-myristate 13-acetate) and cAMP (forskolin and 3-isobutyl-1-methyl-xantine) pathways. Islets of WD DJB rats had higher sintaxin-1 protein content than WD Sham, but without modification in muscarinic-3 receptor, protein kinase (PK)-Cα, and (PK)-Aα protein amounts. In addition, islets of WD DJB animals showed reduction in islets and β-cell masses.

Conclusion

DJB surgery improves fasting glycemia and insulin action in skeletal muscle. Better endocrine pancreatic morphofunction was associated, at least in part, with the regulation of the cholinergic and cAMP pathways, and improvements in syntaxin-1 islet protein content induced by DJB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Jacovetti, R. Regazzi, Compensatory β-cell mass expansion: a big role for a tiny actor. Cell Cycle (2013). https://doi.org/10.4161/cc.23378

  2. S. Seino, T. Shibasaki, K. Minami, Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J. Clin. Invest. (2011). https://doi.org/10.1172/JCI45680

  3. T. Liang, T. Qin, L. Xie, S. Dolai, D. Zhu, K. J. Prentice et al., New roles of syntaxin-1A in insulin granule exocytosis and replenishment. J. Biol. Chem. (2017). https://doi.org/10.1074/jbc.M116.769885

  4. S.N. Yang, O. Larsson, R. Bränström, A.M. Bertorello, B. Leibiger, I.B. Leibiger et al., Syntaxin 1 interacts with the LD subtype of voltage-gated Ca21channels in pancreatic B cells. Proc. Natl Acad. Sci. USA 96, 10164–10169 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C.B. Chan, R.M. MacPhail, L. Sheu, M.B. Wheeler, H.Y. Gaisano, B-cell hypertrophy in fa/fa rats is associated with basal glucose hypersensitivity and reduced SNARE protein expression. Diabetes 48, 997–1005 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. A.C. Boschero, M. Szpak-Glasman, E.M. Carneiro, S. Bordin, I. Paul, E. Rojas et al., Oxotremorine-m potentiation of glucose-induced insulin release from rat islets involves M3 muscarinic receptors. Am. J. Physiol. 268, E336–E342 (1995)

    CAS  PubMed  Google Scholar 

  7. M. Prentki, F.M. Matschinsky, S.R. Madiraju, Metabolic signaling in fuel-induced insulin secretion. Cell Metab. (2013). https://doi.org/10.1016/j.cmet.2013.05.018

  8. R.T. Patel, A.P. Shukla, S.M. Ahn, M. Moreira, F. Rubino, Surgical control of obesity and diabetes: the role of intestinal vs. gastric mechanisms in the regulation of body weight and glucose homeostasis. Obesity (2014). https://doi.org/10.1002/oby.20441

  9. N. Zeeni, C. Dagher-Hamalian, H. Dimassi, W.H. Faour, Cafeteria diet-fed mice is a pertinent model of obesity-induced organ damage: a potential role of inflammation. Inflamm. Res. (2015). https://doi.org/10.1007/s00011-015-0831-z

  10. A.C. Araujo, M.L. Bonfleur, S.L. Balbo, R.A. Ribeiro, A.C. de Freitas, Duodenal-jejunal bypass surgery enhances glucose tolerance and beta-cell function in western diet obese rats. Obes. Surg. (2012). https://doi.org/10.1007/s11695-012-0630-3

  11. G. de Lartigue, Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. (2016). https://doi.org/10.1113/JP271538

  12. H.J. Woerle, L. Carneiro, A. Derani, B. Göke, J. Schirra, The role of endogenous incretin secretion as amplifier of glucose-stimulated insulin secretion in healthy subjects and patients with type 2 diabetes. Diabetes (2012). https://doi.org/10.2337/db11-1701

  13. H. Kashihara, M. Shimada, N. Kurita, T. Iwata, H. Sato, K. Yoshikawa et al., Duodenal-jejunal bypass improves insulin resistance by enhanced glucagon-like peptide-1 secretion through increase of bile acids. Hepatogastroenterol 61, 1049–1054 (2014)

    Google Scholar 

  14. H.C. Lee, M.K. Kim, H.S. Kwon, E. Kim, K.H. Song, Early changes in incretin secretion after laparoscopic duodenal-jejunal bypass surgery in type 2 diabetic patients. Obes. Surg. (2010). https://doi.org/10.1007/s11695-010-0248-2

  15. L.A. Ballsmider, A.C. Vaughn, M. David, A. Hajnal, P.M. Di Lorenzo, K. Czaja, Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural. Plast. (2015). https://doi.org/10.1155/2015/601985

  16. T.M. Batista, P.M. da Silva, A.G. Amaral, R.A. Ribeiro, A.C. Boschero, E.M. Carneiro, Taurine supplementation restores insulin secretion and reduces ER stress markers in protein-malnourished mice. Adv. Exp. Med. Biol. (2013). https://doi.org/10.1007/978-1-4614-6093-0_14

  17. D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985)

    Article  CAS  PubMed  Google Scholar 

  18. C. Lubaczeuski, S.L. Balbo, R.A. Ribeiro, J.F. Vettorazzi, J.C. Santos-Silva, E.M. Carneiro et al., Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats. Braz. J. Med. Biol. Res. (2015). https://doi.org/10.1590/1414-431X20144340

  19. B.P. Sampey, A.M. Vanhoose, H.M. Winfield, A.J. Freemerman, M.J. Muehlbauer, P.T. Fueger et al., Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (2011). https://doi.org/10.1038/oby.2011.18

  20. T.P. Gavin, R.C. Sloan, E.Z. Lukosius, M.A. Reed, J.R. Pender, V. Boghossian et al., Duodenal-jejunal bypass surgery does not increase skeletal muscle insulin signal transduction or glucose disposal in Goto-Kakizaki type 2 diabetic rats. Obes. Surg. (2011). https://doi.org/10.1007/s11695-010-0304-y

  21. J. Jiao, E.J. Bae, G. Bandyopadhyay, J. Oliver, C. Marathe, M. Chen et al., Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes (2013). https://doi.org/10.2337/db12-0681

  22. M.L. Bonfleur, R.A. Ribeiro, A. Pavanello, R. Soster, C. Lubaczeuski, A.C.F. Araujo et al., Duodenal-jejunal bypass restores insulin action and beta-cell function in hypothalamic-obese rats. Obes. Surg. (2014). https://doi.org/10.1007/s11695-014-1427-3

  23. T.L. Kindel, P.J. Martins, S.M. Yoder, R.J. Jandacek, R.J. Seeley, D.A. D’Alessio et al., Bypassing the duodenum does not improve insulin resistance associated with diet-induced obesity in rodents. Obesity (2011). https://doi.org/10.1038/oby.2010.263

  24. D. Sun, K. Wang, Z. Yan, G. Zhang, S. Liu, F. Liu et al., Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats. Obes. Surg. (2013). https://doi.org/10.1007/s11695-014-1427-3

  25. M.L. Bonfleur, P.C. Borck, R.A. Ribeiro, L.C. Caetano, G.M. Soares, E.M. Carneiro et al., Improvement in the expression of hepatic genes involved in fatty acid metabolism in obese rats supplemented with taurine. Life Sci. (2015). https://doi.org/10.1016/j.lfs.2015.05.019

  26. Z.Q. Ren, P.B. Zhang, X.Z. Zhang, S.K. Chen, H. Zhang, D.T. Lv et al., Duodenal-jejunal exclusion improves insulin resistance in type 2 diabetic rats by upregulating the hepatic insulin signaling pathway. Nutrition (2015). https://doi.org/10.1016/j.nut.2014.10.012

  27. M.L. Bonfleur, R.A. Ribeiro, A. Pavanello, R. Soster, C. Lubaczeuski, A.C.F. Araujo et al., Duodenal-jejunal bypass restores insulin action and beta-cell function in hypothalamic-obese rats. Obes. Surg. (2015). https://doi.org/10.1007/s11695-014-1427-3

  28. P. Brandimarti, J.M. Costa-Júnior, S.M. Ferreira, A.O. Protzek, G.J. Santos, E.M. Carneiro et al., Cafeteria diet inhibits insulin clearance by reduced insulin-degrading enzyme expression and mRNA splicing. J. Endocrinol. (2013). https://doi.org/10.1530/JOE-13-0177

  29. E.C. Vanzela, R.A. Ribeiro, C.A. de Oliveira, F.B. Rodrigues, M.L. Bonfleur, E.M. Carneiro et al., Pregnancy restores insulin secretion from pancreatic islets in cafeteria diet-induced obese rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2010). https://doi.org/10.1152/ajpregu.00256.2009.

  30. M. Speck, Y.M. Cho, A. Asadi, F. Rubino, T.J. Kieffer, Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am. J. Physiol. Endocrinol. Metab. (2011). https://doi.org/10.1152/ajpendo.00422.2010

  31. A. Lindqvist, P. Spégel, M. Ekelund, E. Garcia Vaz, S. Pierzynowski, M.F. Gomez et al., Gastric bypass improves β-cell function and increases β-cell mass in a porcine model. Diabetes (2014). https://doi.org/10.2337/db13-0969

  32. L. Gautron, J.F. Zechner, V. Aguirre, Vagal innervation patterns following Roux-en-Y gastric bypass in the mouse. Int. J. Obes. (2013). https://doi.org/10.1038/ijo.2013.48

Download references

Acknowledgements

We are grateful to Assis Roberto Escher Teixeira for animal care and Nicola Conran for editing English.

Funding

This study forms part of the M.Sc. Thesis of M.C.M. and was supported by grants from Fundação Araucária (223/2010; 290/2015); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lúcia Bonfleur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, M.C., Bonfleur, M.L., Ribeiro, R.A. et al. Duodeno-jejunal bypass restores β-cell hypersecretion and islet hypertrophy in western diet obese rats. Endocrine 60, 407–414 (2018). https://doi.org/10.1007/s12020-018-1578-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1578-4

Keywords

Navigation