Skip to main content

Advertisement

Log in

Elevated serum IGF-1 level enhances retinal and choroidal thickness in untreated acromegaly patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

1) To compare the retinal, choroidal, Haller’s layer, and Sattler’s/choriocapillaris thicknesses of untreated acromegaly patients without chiasm compression or diabetes mellitus and healthy controls. 2) To evaluate the correlations of retinal and choroidal thicknesses with serum growth hormone (GH) and insulin-like growth factor 1 (IGF) burden.

Methods

This prospective, case-control study included 27 untreated acromegaly patients and 27 sex-matched and age-matched controls. Subfoveal choroidal, Haller’s layer and Sattler’s/choriocapillaris thicknesses were determined by enhanced-depth imaging optical coherence tomography (EDI-OCT). Foveal and macular retinal thicknesses were determined with SD-OCT. GH and IGF-1 burdens were defined as the product of disease duration and treatment-naïve serum GH and IGF-1 levels.

Results

Compared with healthy controls, patients with acromegaly exhibited significantly increased foveal retinal (p = 0.003), subfoveal choroidal (p < 0.001), and Haller’s layer (p < 0.001) thicknesses, with no differences in Sattler’s/choriocapillaris layer thickness. Multiple point measurements in the posterior pole area showed equally increased nasal and temporal parts of the choroid. The retinal thickness maps of the two groups did not significantly differ. Correlation analysis indicated that choroidal thickness was significantly correlated with disease duration (p = 0.01), serum IGF-1 level (p = 0.03) and IGF-1 burden (p = 0.009). No significant correlations were detected between choroidal thickness and GH burden (p = 0.44). Retinal thickness was not significantly correlated with any factor.

Conclusion

The choroidal thickness of acromegaly patients was greater than that of healthy controls and was significantly correlated with disease duration, IGF-1 level and IGF-1 burden, indicating that excessive serum IGF-1 and its exposure time have a combined effect on choroidal thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Melmed, Medical progress: acromegaly. N. Engl. J. Med. 355, 2558–2573 (2006)

    Article  CAS  Google Scholar 

  2. H. Altinkaynak, N. Duru, R. Ersoy et al., Topographic and biomechanical evaluation of cornea in patients with acromegaly. Cornea 34, 65–70 (2015)

    Article  Google Scholar 

  3. I. Cosemans, P. Demaerel, B. Wets, B. De Hauwere, W. Spileers, [Retinitis pigmentosa in association with acromegaly: a case report]. Doc. Ophthalmol. 98, 175–181 (1999)

    Article  CAS  Google Scholar 

  4. A. Zafar, D.R. Jordan, Enlarged extraocular muscles as the presenting feature of acromegaly. Ophthal. Plast. Reconstr. Surg. 20, 334–336 (2004)

    Article  Google Scholar 

  5. G. Pekel, F. Akin, M.S. Ertürk et al., Chorio-retinal thickness measurements in patients with acromegaly. Eye 28, 1350–1354 (2014)

    Article  CAS  Google Scholar 

  6. M. Şahin, A. Şahin, F. Kılınç et al., Retina ganglion cell/inner plexiform layer and peripapillary nerve fiber layer thickness in patients with acromegaly. Int. Ophthalmol 37, 591–598 (2017). https://doi.org/10.1007/s10792-016-0310-8.

    Article  Google Scholar 

  7. C.N. Jayasena, A.N. Comninos, H. Clarke, M. Donaldson, K. Meeran, W.S. Dhillo, The effects of long-term growth hormone and insulin-like growth factor-1 exposure on the development of cardiovascular, cerebrovascular and metabolic co-morbidities in treated patients with acromegaly. Clin. Endocrinol. 75, 220–225 (2011)

    Article  CAS  Google Scholar 

  8. A. Ozkok, E. Hatipoglu, N. Tamcelik et al., Corneal biomechanical properties of patients with acromegaly. Br. J. Ophthalmol. 98, 651–657 (2014)

    Article  Google Scholar 

  9. L. Katznelson, E.R. Laws Jr, S. Melmed et al., Acromegaly: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 99, 3933–3951 (2014)

    Article  CAS  Google Scholar 

  10. American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Suppl 1), S67–S74 (2013)

    Article  Google Scholar 

  11. L.A. Branchini, M. Adhi, C.V. Regatieri et al., Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 120, 1901–1908 (2013)

    Article  Google Scholar 

  12. C. Kanaka-Gantenbein, C. Kogia, M.B. Abdel-Naser, G.P. Chrousos, Skin manifestations of growth hormone-induced diseases. Rev. Endocr. Metab. Disord. 17, 259–267 (2016)

    Article  CAS  Google Scholar 

  13. A. Abreu, A.P. Tovar, R. Castellanos et al., Challenges in the diagnosis and management of acromegaly: a focus on comorbidities. Pituitary 19, 448–457 (2016)

    Article  CAS  Google Scholar 

  14. S. Tuzcu, S.A. Durmaz, A. Carlıoğlu et al., [The effects of high serum growth hormone and IGF-1 levels on bone mineral density in acromegaly]. Z. Rheumatol 76, 716–722 (2017)

    Article  Google Scholar 

  15. X. Guo, L. Gao, S. Zhang et al., Cardiovascular system changes and related risk factors in acromegaly patients: a case-control study. Int. J. Endocrinol. 2015, 573643 (2015)

  16. L.E.H. Smith, W. Shen, C. Perruzzi et al., Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat. Med. 5, 1390–1395 (1999)

    Article  CAS  Google Scholar 

  17. J. Lowe, J. Araujo, J. Yang et al., Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo. Exp. Eye. Res. 85, 425–430 (2007)

    Article  CAS  Google Scholar 

  18. R.S. Punglia, M. Lu, J. Hsu et al., Regulation of vascular endothelial growth factor expression by insulin-like growth factor I. Diabetes 46, 1619–1626 (1997)

    Article  CAS  Google Scholar 

  19. H. Yokouchi, T. Baba, S. Misawa et al., Changes in subfoveal choroidal thickness and reduction of serum levels of vascular endothelial growth factor in patients with POEMS syndrome. Br. J. Ophthalmol. 100, 897–901 (2016)

    Article  Google Scholar 

  20. H. Koizumi, M. Kano, A. Yamamoto et al., Subfoveal choroidal thickness during Aflibercept therapy for neovascular age-related macular degeneration: twelve-month results. Ophthalmology 123, 617–624 (2016)

    Article  Google Scholar 

  21. S.J. Ahn, K.H. Park, S.J. Woo, Subfoveal choroidal thickness changes following anti-vascular endothelial growth factor therapy in myopic choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 56, 5794–5800 (2015)

    Article  CAS  Google Scholar 

  22. P. Maison, P. Démolis, J. Young, G. Schaison, J.F. Giudicelli, P. Chanson, Vascular reactivity in acromegalic patients: preliminary evidence for regional endothelial dysfunction and increased sympathetic vasoconstriction. Clin. Endocrinol. (Oxf.). 53, 445–451 (2000)

    Article  CAS  Google Scholar 

  23. D. Chemla, P. Attal, L. Maione et al., Impact of successful treatment of acromegaly on overnight heart rate variability and sleep apnea. J. Clin. Endocrinol. Metab. 99, 2925–2931 (2014)

    Article  CAS  Google Scholar 

  24. Y.R. Chung, J.W. Kim, S.W. Kim, K. Lee, Choroidal thickness in patients with central serous chorioretinopathy: assessment of haller and Sattler layers. Retina 36, 1652–1657 (2016)

    Article  Google Scholar 

  25. C.W. Spraul, A. Baldysiak-Figiel, G.K. Lang, G.E. Lang, Octreotide inhibits growth factor-induced bovine choriocapillary endothelial cells in vitro. Graefes. Arch. Clin. Exp. Ophthalmol. 240, 227–231 (2002)

    Article  CAS  Google Scholar 

  26. A.J. Fischer, M.A. Scott, E.R. Ritchey, P. Sherwood, Mitogen-activated protein kinase-signaling regulates the ability of Müller glia to proliferate and protect retinal neurons against excitotoxicity. Glia 57, 1538–1552 (2009)

    Article  Google Scholar 

  27. A.J. Fischer, B.D. Dierks, T.A. Reh, Exogenous growth factors induce the production of ganglion cells at the retinal margin. Development 129, 2283–2291 (2002)

    CAS  PubMed  Google Scholar 

  28. S. Kumar, R.N. Yadav, P. Gupta et al., Prostatic hyperplasia in acromegaly, a myth or reality: a case-control study. Eur. J. Endocrinol. 172, 97–106 (2015)

    Article  CAS  Google Scholar 

  29. I. Laíns, K.E. Talcott, A.R. Santos, et al., Choroidal thickness in diabetic retinopathy assessed with swept-source optical coherence tomography. Retina 38, 173–182 (2018). https://doi.org/10.1097/IAE.0000000000001516.

    Article  Google Scholar 

  30. A. Akashi, A. Kanamori, K. Ueda et al., The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Invest. Ophthalmol. Vis. Sci. 55, 4667 (2014)

    Article  Google Scholar 

  31. I. Maruko, T. Iida, Y. Sugano, A. Ojima, T. Sekiryu, Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy. Retina 31, 1603–1608 (2011)

    Article  Google Scholar 

  32. A.C. Lambooij, K.H. van Wely, D.J. Lindenbergh-Kortleve, R.W. Kuijpers, M. Kliffen, C.M. Mooy, Insulin-like growth factor-I and its receptor in neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 44, 2192–2198 (2003)

    Article  Google Scholar 

  33. I. Ocrant, K.L. Valentino, M.G. King, T.H. Wimpy, R.G. Rosenfeld, D.G. Baskin, Localization and structural characterization of insulin- like growth factor receptors in mammalian retina. Endocrinology 125, 2407–2413 (1989)

    Article  CAS  Google Scholar 

  34. M. Grant, G.L. King, IGF-I and blood vessels: implications for microvascular and macrovascular disease. Diabetes Rev. 3, 113–128 (1995)

    Google Scholar 

  35. C.W. Spraul, C. Kaven, J. Amann, G.K. Lang, G.E. Lang, Effect of insulin-like growth factors 1 and 2, and glucose on the migration and proliferation of bovine retinal pigment epithelial cells in vitro. Ophthal Res. 32, 244–248 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Erqian Wang for her kind help and advice regarding this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Xing or Yong Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Xia Zhang and Jin Ma contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, J., Wang, Y. et al. Elevated serum IGF-1 level enhances retinal and choroidal thickness in untreated acromegaly patients. Endocrine 59, 634–642 (2018). https://doi.org/10.1007/s12020-017-1511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1511-2

Keywords

Navigation