Skip to main content

Advertisement

Log in

Functional thyrotropin receptor expression in the ventricle and the effects on ventricular BNP secretion

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Elevated thyrotropin (TSH) and hypercholesterolemia commonly coexist in patients with subclinical hypothyroidism, which can cause and aggravate heart disease. However, it is unclear whether TSH has a direct effect on cardiac function. To determine the expression of the thyrotropin receptor (TSHR) and the effects of TSH on ventricular function, we analyzed the ventricular tissues and thyroid glands from normal rats and mice and the H9c2 cardiomyocyte cell line. The results revealed that TSHR was expressed at the transcriptional and protein levels by PCR, immunoblotting, immunohistochemistry and immunofluorescence. The mRNA levels of β-MHC and the expression of pCREB and HMGCR in the ventricle were significantly lower in Tshr / mice than in wild-type (WT) mice (p < 0.05), but serum NT-proBNP levels were similar between WT and Tshr / mice. After synchronization, H9c2 cells were stimulated with several concentrations of TSH for various time periods. TSH up-regulated β-MHC mRNA expression in H9c2 cells. Cyclic adenosine monophosphate (cAMP) production and downstream signaling, such as pCREB and HMGCR expression and NT-proBNP secretion, increased in dose- and time-dependent manners. The TSH-stimulated effects were suppressed by an adenylyl cyclase inhibitor, a protein kinase A (PKA) inhibitor and HMGCR inhibitors (all p < 0.05). The data indicate functional TSHR is expressed in ventricular myocytes and mediates TSH-induced BNP secretion and HMGCR up-regulation through the cAMP/PKA/pCREB signaling pathway. Our findings suggest a potentially novel pathophysiological role of TSH in heart failure-associated hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.I. Khalife, Y.D. Tang, J.A. Kuzman, T.A. Thomas, B.E. Anderson, S. Said, P. Tille, E.H. Schlenker, A.M. Gerdes, Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am. J. Physiol. 289(6), H2409–H2415 (2005). doi:10.1152/ajpheart.00483.2005

    CAS  Google Scholar 

  2. N. Rodondi, D.C. Bauer, A.R. Cappola, J. Cornuz, J. Robbins, L.P. Fried, P.W. Ladenson, E. Vittinghoff, J.S. Gottdiener, A.B. Newman, Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. The Cardiovascular Health study. J. Am. Coll. Cardiol. 52(14), 1152–1159 (2008). doi:10.1016/j.jacc.2008.07.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. N. Rodondi, A.B. Newman, E. Vittinghoff, N. de Rekeneire, S. Satterfield, T.B. Harris, D.C. Bauer, Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch. Intern. Med. 165(21), 2460–2466 (2005). doi:10.1001/archinte.165.21.2460

    Article  PubMed  Google Scholar 

  4. M.D. Danese, P.W. Ladenson, C.L. Meinert, N.R. Powe, Clinical review 115: effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J. Clin. Endocrinol. Metab. 85(9), 2993–3001 (2000)

    CAS  PubMed  Google Scholar 

  5. A.E. Hak, H.A. Pols, T.J. Visser, H.A. Drexhage, A. Hofman, J.C. Witteman, Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann. Intern. Med. 132(4), 270–278 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. J.P. Walsh, A.P. Bremner, M.K. Bulsara, P. O’Leary, P.J. Leedman, P. Feddema, V. Michelangeli, Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch. Intern. Med. 165(21), 2467–2472 (2005). doi:10.1001/archinte.165.21.2467. 165/21/2467 [pii]

    Article  PubMed  Google Scholar 

  7. C. Xu, X. Yang, W. Liu, H. Yuan, C. Yu, L. Gao, J. Zhao, Thyroid stimulating hormone, independent of thyroid hormone, can elevate the serum total cholesterol level in patients with coronary heart disease: a cross-sectional design. Nutr. Metab. 9(1), 44 (2012). doi:10.1186/1743-7075-9-44

    Article  Google Scholar 

  8. F. Wang, Y. Tan, C. Wang, X. Zhang, Y. Zhao, X. Song, B. Zhang, Q. Guan, J. Xu, J. Zhang, D. Zhang, H. Lin, C. Yu, J. Zhao, Thyroid-stimulating hormone levels within the reference range are associated with serum lipid profiles independent of thyroid hormones. J. Clin. Endocrinol. Metab. 97(8), 2724–2731 (2012). doi:10.1210/jc.2012-1133

    Article  CAS  PubMed  Google Scholar 

  9. E. Martinez-Quintana, F. Rodriguez-Gonzalez, V. Nieto-Lago, Subclinical hypothyroidism in grown-up congenital heart disease patients. Pediatr. Cardiol. 34(4), 912–917 (2013). doi:10.1007/s00246-012-0571-6

    Article  PubMed  Google Scholar 

  10. J.L. Goldstein, M.S. Brown, Regulation of the mevalonate pathway. Nature 343(6257), 425–430 (1990). doi:10.1038/343425a0

    Article  CAS  PubMed  Google Scholar 

  11. M. Takemoto, J.K. Liao, Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler. Thromb. Vasc. Biol. 21(11), 1712–1719 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. K. Kato, A.D. Cox, M.M. Hisaka, S.M. Graham, J.E. Buss, C.J. Der, Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. Sci. USA 89(14), 6403–6407 (1992)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. S.J. Fuller, J. Gillespie-Brown, P.H. Sugden, Oncogenic src, raf, and ras stimulate a hypertrophic pattern of gene expression and increase cell size in neonatal rat ventricular myocytes. J. Biol. Chem. 273(29), 18146–18152 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. P. Mathiyalagan, L. Chang, X.J. Du, A. El-Osta, Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle 9(3), 612–617 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. L. D’Amico, I.C. Scott, B. Jungblut, D.Y. Stainier, A mutation in zebrafish hmgcr1b reveals a role for isoprenoids in vertebrate heart-tube formation. Curr. Biol. 17(3), 252–259 (2007). doi:10.1016/j.cub.2006.12.023

    Article  PubMed  Google Scholar 

  16. G. Deshpande, A. Godishala, P. Schedl, Ggamma1, a downstream target for the hmgcr-isoprenoid biosynthetic pathway, is required for releasing the Hedgehog ligand and directing germ cell migration. PLoS Genet. 5(1), e1000333 (2009). doi:10.1371/journal.pgen.1000333

    Article  PubMed Central  PubMed  Google Scholar 

  17. T. Aoyagi, F. Nakamura, T. Tomaru, T. Toyo-Oka, Beneficial effects of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardiac function in ischemic and nonischemic heart failure. Intern. Heart J. 49(1), 49–58 (2008)

    Article  CAS  Google Scholar 

  18. K. Node, M. Fujita, M. Kitakaze, M. Hori, J.K. Liao, Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 108(7), 839–843 (2003). doi:10.1161/01.CIR.0000084539.58092.DE

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. D. Grieco, Z.H. Beg, A. Romano, M. Bifulco, S.M. Aloj, Cell cycle progression and 3-hydroxy-3-methylglutaryl coenzyme A reductase are regulated by thyrotropin in FRTL-5 rat thyroid cells. J. Biol. Chem. 265(31), 19343–19350 (1990)

    CAS  PubMed  Google Scholar 

  20. L. Tian, Y. Song, M. Xing, W. Zhang, G. Ning, X. Li, C. Yu, C. Qin, J. Liu, X. Tian, X. Sun, R. Fu, L. Zhang, X. Zhang, Y. Lu, J. Zou, L. Wang, Q. Guan, L. Gao, J. Zhao, A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 52(4), 1401–1409 (2010). doi:10.1002/hep.23800

    Article  CAS  PubMed  Google Scholar 

  21. R. Baliram, L. Sun, J. Cao, J. Li, R. Latif, A.K. Huber, T. Yuen, H.C. Blair, M. Zaidi, T.F. Davies, Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Investig. 122(10), 3737–3741 (2012). doi:10.1172/JCI63948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. M. Ren, Q. Guan, X. Zhong, B. Gong, Y. Sun, W. Xin, J. Guo, H. Wang, L. Gao, J. Zhao, Phosphatidylinositol 3-kinase/nuclear factor-kappa B signaling pathway is involved in the regulation of IGF-I on Fas-associated death domain-like interleukin-1-converting enzyme-inhibitory protein expression in cultured FRTL thyroid cells. J. Mol. Endocrinol. 38(6), 619–625 (2007). doi:10.1677/JME-07-0020

    Article  CAS  PubMed  Google Scholar 

  23. W. Zhang, L.M. Tian, Y. Han, H.Y. Ma, L.C. Wang, J. Guo, L. Gao, J.J. Zhao, Presence of thyrotropin receptor in hepatocytes: not a case of illegitimate transcription. J. Cell Mol. Med. 13(11–12), 4636–4642 (2009). doi:10.1111/j.1582-4934.2008.00670.x

    Article  CAS  PubMed  Google Scholar 

  24. R. Paschke, V. Geenen, Messenger RNA expression for a TSH receptor variant in the thymus of a two-year-old child. J. Mol. Med. 73(11), 577–580 (1995)

    Article  CAS  PubMed  Google Scholar 

  25. T. Endo, K. Ohta, K. Haraguchi, T. Onaya, Cloning and functional expression of a thyrotropin receptor cDNA from rat fat cells. J. Biol. Chem. 270(18), 10833–10837 (1995)

    Article  CAS  PubMed  Google Scholar 

  26. M. Mengistu, Y.G. Lukes, E.V. Nagy, H.B. Burch, F.E. Carr, S. Lahiri, K.D. Burman, TSH receptor gene expression in retroocular fibroblasts. J. Endocrinol. Invest. 17(6), 437–441 (1994)

    CAS  PubMed  Google Scholar 

  27. V. Drvota, A. Janson, C. Norman, C. Sylven, J. Haggblad, M. Bronnegard, C. Marcus, Evidence for the presence of functional thyrotropin receptor in cardiac muscle. Biochem. Biophys. Res. Commun. 211(2), 426–431 (1995). doi:10.1006/bbrc.1995.1831

    Article  CAS  PubMed  Google Scholar 

  28. D.F. Sellitti, R. Hill, S.Q. Doi, T. Akamizu, J. Czaja, S. Tao, H. Koshiyama, Differential expression of thyrotropin receptor mRNA in the porcine heart. Thyroid 7(4), 641–646 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. B.E. Busuttil, A.G. Frauman, Extrathyroidal manifestations of Graves’ disease: the thyrotropin receptor is expressed in extraocular, but not cardiac, muscle tissues. J. Clin. Endocrinol. Metab. 86(5), 2315–2319 (2001)

    CAS  PubMed  Google Scholar 

  30. B. Biondi, Mechanisms in endocrinology: heart failure and thyroid dysfunction. Eur. J. Endocrinol./Eur. Fed. Endocr. Soc. 167(5), 609–618 (2012). doi:10.1530/EJE-12-0627

    Article  CAS  Google Scholar 

  31. G. Iervasi, G. Nicolini, Thyroid hormone and cardiovascular system: from basic concepts to clinical application. Intern. Emerg. Med. 8(Suppl 1), S71–S74 (2013). doi:10.1007/s11739-013-0911-4

    Article  PubMed  Google Scholar 

  32. T.L. Broderick, M. Jankowski, D. Wang, B.A. Danalache, C.R. Parrott, J. Gutkowska, Downregulation in GATA4 and Downstream Structural and Contractile Genes in the db/db Mouse Heart. ISRN Endocrinol. 2012, 736860 (2012). doi:10.5402/2012/736860

    Article  PubMed Central  PubMed  Google Scholar 

  33. W.J. Remme, K. Swedberg, Task force for the, D., treatment of chronic heart failure, E.S.o.C.: guidelines for the diagnosis and treatment of chronic heart failure. Eur. Heart J. 22(17), 1527–1560 (2001). doi:10.1053/euhj.2001.2783

    Article  CAS  PubMed  Google Scholar 

  34. P.F. Downie, S. Talwar, I.B. Squire, J.E. Davies, D.B. Barnett, L.L. Ng, Assessment of the stability of N-terminal pro-brain natriuretic peptide in vitro: implications for assessment of left ventricular dysfunction. Clin. Sci. 97(3), 255–258 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. S.J. Watkins, G.M. Borthwick, H.M. Arthur, The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In vitro cellular & developmental biology. Animal 47(2), 125–131 (2011). doi:10.1007/s11626-010-9368-1

    CAS  Google Scholar 

  36. T. Kimura, A. Van Keymeulen, J. Golstein, A. Fusco, J.E. Dumont, P.P. Roger, Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr. Rev. 22(5), 631–656 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. A. Bell, A. Gagnon, P. Dods, D. Papineau, M. Tiberi, A. Sorisky, TSH signaling and cell survival in 3T3-L1 preadipocytes. Am. J. Physiol. Cell Physiol. 283(4), C1056–C1064 (2002). doi:10.1152/ajpcell.00058.2002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from National Basic Research Program of China (2012CB524900), the National Natural Science Foundation of China (30971409, 30901461, 81230018, 81170794 and 81270869) and Natural Science Foundation (ZR2009CZ009) and the international cooperation Grant (2011) of Shandong Province of China and Jinan self-renovation plan of colleges and universities as well as scientific research institutes (2012).

Conflict of interest

The authors declare that there is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Tao Yuan or Jia-Jun Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Xu, J., Jing, F. et al. Functional thyrotropin receptor expression in the ventricle and the effects on ventricular BNP secretion. Endocrine 46, 328–339 (2014). https://doi.org/10.1007/s12020-013-0052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0052-6

Keywords

Navigation