Skip to main content
Log in

Exploring the Links Between Common Diseases of Ageing—Osteoporosis, Sarcopenia and Vascular Calcification

  • Review Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Vascular diseases account for a significant proportion of preventable deaths, particularly in developed countries. Our understanding of diseases that alter the structure and function of blood vessels such as vascular calcification and vascular stiffness has grown enormously such that we now appreciate them to be active processes that can be modified. Interest has also grown in examining the links between other diseases of ageing such as the loss of bone (osteoporosis) and muscle (sarcopenia) with the development and progression of vascular disease as these three disease states commonly co-occur in older age. Cardiovascular disease (including calcification and arterial stiffness) is highly prevalent in older populations and it appears that its progression is accelerated in patients with osteoporosis, fracture, sarcopenia and in those who are functionally impaired. Biological and clinical evidence supports a view that vascular disease (calcification/stiffness) may be both a cause and consequence of diseases of ageing including musculoskeletal decline. This review provides an overview of the development of vascular calcification and stiffness and explores the molecular and physiological mechanisms linking osteoporosis and sarcopenia to vascular disease development. This review also examines clinical evidence supporting the association of muscle and bone loss with vascular disease and concludes by reviewing the interventional and therapeutic potential of bone-active minerals and hormones (calcium and vitamin D) on cardiovascular disease biology, given that these represent potential interventions to target multiple body systems. Overall, this review will aim to highlight the underappreciated burden of cardiovascular disease in individuals in the context of musculoskeletal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.

    Article  PubMed  Google Scholar 

  2. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353:878–82.

    Article  CAS  PubMed  Google Scholar 

  3. Seeman E. Invited review: pathogenesis of osteoporosis. J Appl Physiol. 2003;95(5):2142–51.

    Article  PubMed  Google Scholar 

  4. Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O’Malley CD. Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos. 2014;9(1):182.

    Article  CAS  PubMed  Google Scholar 

  5. Sanders KM, Seeman E, Ugoni AM, et al. Age-and Gender-Specific Rate of Fractures in Australia: A Population-Based Study https://search-proquest-com.ezproxy.lib.monash.edu.au/docview/848553449?accountid=12528. Accessed 20 Aug 2018.

  6. Mithal A, Bansal B, Kyer C, Ebeling P. The Asia-Pacific Regional Audit-Epidemiology, Costs, and Burden of Osteoporosis in India 2013: A Report of International Osteoporosis Foundation. Indian J Endocrinol Metab. 2014;18:449.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22:465–75.

    Article  PubMed  Google Scholar 

  9. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337:670–6.

    Article  CAS  PubMed  Google Scholar 

  10. Bolland MJ, Barber PA, Doughty RN, et al. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ. 2008;336:262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolland MJ, Avenell A, Baron JA, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Licata AA. Discovery, clinical development, and therapeutic uses of bisphosphonates. Ann Pharmacother. 2005;39(4):668–77.

    Article  CAS  PubMed  Google Scholar 

  13. Rodan GA, Fleisch HA. Bisphosphonates: mechanisms of action. J Clin Invest. 1996;97:2692–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, et al. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11(5):401–19.

    Article  CAS  PubMed  Google Scholar 

  15. Satterwhite J, Heathman M, Miller PD, Marín F, Glass EV, Dobnig H. Pharmacokinetics of teriparatide (rhPTH[1-34]) and calcium pharmacodynamics in postmenopausal women with osteoporosis. Calcif Tissue Int. 2010;87:485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brixen KT, Christensen B, Ejersted C, Langdahl BL. Teriparatide (biosynthetic human parathyroid hormone 1-34): a new paradigm in the treatment of osteoporosis. Pharmacol Toxicol. 2004;94(6):260–70.

    Article  CAS  Google Scholar 

  17. Brennan T, Rybchyn M, Green W, Atwa S, Conigrave A, Mason R. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol. 2009;157:1291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanis JA, McCloskey EV. Risk factors in osteoporosis. Maturitas. 1998;30(3):229–33.

    Article  CAS  PubMed  Google Scholar 

  19. Kanis JA, Harvey NC, Johansson H, Odén A, McCloskey EV, Leslie WD. Overview of fracture prediction tools. J Clin Densitom. 2017;20:444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nguyen TV, Eisman JA. Fracture risk assessment: from population to individual. J Clin Densitom. 2017;20:368–78.

    Article  PubMed  Google Scholar 

  21. Iwaniec UT, Turner RT. Influence of body weight on bone mass, architecture and turnover. J Endocrinol. 2016;230:R115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerckhofs G, Durand M, Vangoitsenhoven R, Marin C, van der Schueren B, Carmeliet G, et al. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography. Sci Rep. 2016;6(1):35517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu C-T, Broe KE, Zhou Y, Boyd SK, Cupples LA, Hannan MT, et al. Visceral adipose tissue is associated with bone microarchitecture in the Framingham osteoporosis study. J Bone Miner Res. 2017;32(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  24. Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res. 2012;27:1–10.

    Article  PubMed  Google Scholar 

  25. Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010;14:362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scott D, Shore-Lorenti C, McMillan LB, et al. Calf muscle density is independently associated with physical function in overweight and obese older adults. J Musculoskelet Neuronal Interact. 2018;18:9–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Scott D, Shore-Lorenti C, McMillan L, et al. Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch Gerontol Geriatr. 2018;75:125–31.

    Article  PubMed  Google Scholar 

  28. Szulc P, Samelson EJ, Kiel DP, Delmas PD. Increased bone resorption is associated with increased risk of cardiovascular events in men: the MINOS study. J Bone Miner Res. 2009;24:2023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang S, Chen A, Wu T. Association of history of fracture with prehypertension and hypertension: a retrospective case-control study. BMC Musculoskelet Disord. 2015;16:86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sennerby U, Melhus H, Gedeborg R, et al. Cardiovascular diseases and risk of hip fracture. JAMA. 2009;302:1666.

    Article  CAS  PubMed  Google Scholar 

  31. Fricke O, Beccard R, Semler O, Schoenau E. Analyses of muscular mass and function: the impact on bone mineral density and peak muscle mass. Pediatr Nephrol. 2010;25:2393–400.

    Article  PubMed  Google Scholar 

  32. Tsuda K, Nishio I, Masuyama Y. Bone mineral density in women with essential hypertension. Am J Hypertens. 2001;14:704–7.

    Article  CAS  PubMed  Google Scholar 

  33. Jorgensen L, Joakimsen O, Rosvold Berntsen GK, Heuch I, Jacobsen BK. Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol. 2004;160:549–56.

    Article  PubMed  Google Scholar 

  34. Tanko LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res. 2005;20(11):1912–20.

    Article  PubMed  Google Scholar 

  35. Wong CX, Gan SW, Lee SW, et al. Atrial fibrillation and risk of hip fracture: a population-based analysis of 113,600 individuals. Int J Cardiol. 2017;243:229–32.

    Article  PubMed  Google Scholar 

  36. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA. High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of Osteoporotic Fractures Research Group. Lancet. 1999;354:971–5.

    Article  CAS  PubMed  Google Scholar 

  37. Sennerby U, Farahmand B, Ahlbom A, Ljunghall S, Michaelsson K. Cardiovascular diseases and future risk of hip fracture in women. Osteoporos Int. 2007;18:1355–62.

    Article  CAS  PubMed  Google Scholar 

  38. Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C. Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med. 2006;259:598–605.

    Article  CAS  PubMed  Google Scholar 

  39. Jorgensen L, Joakimsen O, Mathiesen EB, et al. Carotid plaque echogenicity and risk of nonvertebral fractures in women: a longitudinal population-based study. Calcif Tissue Int. 2006;79:207–13.

    Article  CAS  PubMed  Google Scholar 

  40. Scott D, Blizzard L, Fell J, Jones G. The epidemiology of sarcopenia in community living older adults: what role does lifestyle play? J Cachexia Sarcopenia Muscle. 2011;2(3):125–34.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bischoff-Ferrari HA, Orav JE, Kanis JA, et al. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int. 2015;26:2793–802.

    Article  CAS  PubMed  Google Scholar 

  42. Patel HP, Syddall HE, Jameson K, Robinson S, Denison H, Roberts HC, et al. Prevalence of sarcopenia in community-dwelling older people in the UK using the European working group on sarcopenia in older people (EWGSOP) definition: findings from the Hertfordshire cohort study (HCS). Age Ageing. 2013;42(3):378–84.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yamada M, Nishiguchi S, Fukutani N, et al. Prevalence of sarcopenia in community-dwelling Japanese older adults. J Am Med Dir Assoc. 2013;14:911–5.

    Article  PubMed  Google Scholar 

  44. Waters DL, Baumgartner RN, Garry PJ. Sarcopenia: current perspectives. J Nutr Health Aging. 2000;4:133–9.

    CAS  PubMed  Google Scholar 

  45. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miljkovic I, Kuipers AL, Cauley JA, et al. Greater skeletal muscle fat infiltration is associated with higher all-cause and cardiovascular mortality in older men. J Gerontol A Biol Sci Med Sci. 2015;70:1133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scott D, Trbojevic T, Skinner E, Clark RA, Levinger P, Haines TP, et al. Associations of calf inter- and intra-muscular adipose tissue with cardiometabolic health and physical function in community-dwelling older adults. J Musculoskelet Neuronal Interact. 2015;15(4):350–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosique-Esteban N, Babio N, Díaz-López A, et al. Leisure-time physical activity at moderate and high intensity is associated with parameters of body composition, muscle strength and sarcopenia in aged adults with obesity and metabolic syndrome from the PREDIMED-Plus study. Clin Nutr. 2018; published online June 6. https://doi.org/10.1016/j.clnu.2018.05.023.

  49. Kim J, Lee Y, Kye S, Chung Y-S, Kim K-M. Association between healthy diet and exercise and greater muscle mass in older adults. J Am Geriatr Soc. 2015;63:886–92.

    Article  PubMed  Google Scholar 

  50. Reid KF, Martin KI, Doros G, et al. Comparative effects of light or heavy resistance power training for improving lower extremity power and physical performance in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 2015;70:374–80.

    Article  PubMed  Google Scholar 

  51. PETERSON MD, SEN A, GORDON PM. Influence of resistance exercise on lean body mass in aging adults. Med Sci Sport Exerc. 2011;43:249–58.

    Article  Google Scholar 

  52. Campbell WW, Trappe TA, Wolfe RR, Evans WJ. The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J Gerontol A Biol Sci Med Sci. 2001;56:M373–80.

    Article  CAS  PubMed  Google Scholar 

  53. Morris MS, Jacques PF. Total protein, animal protein and physical activity in relation to muscle mass in middle-aged and older Americans. Br J Nutr. 2013;109:1294–303.

    Article  CAS  PubMed  Google Scholar 

  54. Granic A, Mendonça N, Sayer AA, et al. Low protein intake, muscle strength and physical performance in the very old: The Newcastle 85+ Study. Clin Nutr. 2017; published online Nov 16. https://doi.org/10.1016/j.clnu.2017.11.005.

  55. Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The neuromuscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci. 2014;6:208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JAE, et al. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev. 2012;33(3):456–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian older adult cohort study. J Am Geriatr Soc. 2010;58:2129–34.

    Article  PubMed  Google Scholar 

  58. Rousseau A-F, Foidart-Desalle M, Ledoux D, Remy C, Croisier JL, Damas P, et al. Effects of cholecalciferol supplementation and optimized calcium intakes on vitamin D status, muscle strength and bone health: a one-year pilot randomized controlled trial in adults with severe burns. Burns. 2015;41(2):317–25.

    Article  PubMed  Google Scholar 

  59. van Dronkelaar C, van Velzen A, Abdelrazek M, van der Steen A, Weijs PJM, Tieland M. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J Am Med Dir Assoc. 2018;19:6–11.e3.

    Article  PubMed  Google Scholar 

  60. Bo Y, Liu C, Ji Z, et al. A high whey protein, vitamin D and E supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: A double-blind randomized controlled trial. Clin Nutr. 2018; published online Jan 9. https://doi.org/10.1016/j.clnu.2017.12.020.

  61. Bauer JM, Verlaan S, Bautmans I, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16:740–7.

    Article  PubMed  Google Scholar 

  62. Beaudart C, Dawson A, Shaw SC, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int. 2017;28:1817–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Antoniak AE, Greig CA. The effect of combined resistance exercise training and vitamin D 3 supplementation on musculoskeletal health and function in older adults: a systematic review and meta-analysis. BMJ Open. 2017;7:e014619.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Trajanoska K, Schoufour JD, Darweesh SK, et al. Sarcopenia and its clinical correlates in the general population: the Rotterdam study. J Bone Miner Res. 2018;33:1209–18.

    Article  PubMed  Google Scholar 

  65. Atkins JL, Whincup PH, Morris RW, Lennon LT, Papacosta O, Wannamethee SG. Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc. 2014;62:253–60.

    Article  PubMed  Google Scholar 

  66. Chuang S-Y, Chang H-Y, Lee M-S, Chia-Yu Chen R, Pan W-H. Skeletal muscle mass and risk of death in an elderly population. Nutr Metab Cardiovasc Dis. 2014;24:784–91.

    Article  PubMed  Google Scholar 

  67. Cardiovascular disease: Australian facts 2011. Canberra, 2011. https://www.aihw.gov.au/getmedia/9621f6a8-f076-4e3e-a9c7-dece59ff0d74/12116.pdf.aspx?inline=true. Accessed 9 Jan 2018.

  68. Australian Institute of Health and Welfare. Cardiovascular Disease in Australia 2018. 2018. https://www.aihw.gov.au/reports/heart-stroke-vascular-disease/cardiovascular-health-compendium/data. Accessed 7 Jul 2018.

  69. Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface. 2013;10:20121004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Speer MY, Yang H-Y, Brabb T, et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104:733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu D, Mackenzie NCW, Millán JL, Farquharson C, MacRae VE. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One. 2011;6:e19595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pugliese G, Iacobini C, Fantauzzi CB, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis. 2015;238. https://doi.org/10.1016/j.atherosclerosis.2014.12.011.

  73. Wolinsky H, Glagov S. A lamellar unit of aortic medial structure and function in mammals. Am Hear Assoc http://circres.ahajournals.org/content/circresaha/20/1/99.full.pdf. Accessed 26 Mar 2018.

  74. Ooshima A, Fuller GC, Cardinale GJ, Spector S, Udenfriend S. Increased collagen synthesis in blood vessels of hypertensive rats and its reversal by antihypertensive agents. Proc Natl Acad Sci U S A. 1974;71:3019–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shang X, Scott D, Hodge A, et al. Adiposity assessed by anthropometric measures has a similar or greater predictive ability than dual-energy X-ray absorptiometry measures for abdominal aortic calcification in community-dwelling older adults. Int J Card Imaging. 2016;32:1451–60.

    Article  Google Scholar 

  76. Norman PE, Jamrozik K, Lawrence-Brown MM, et al. Population based randomised controlled trial on impact of screening on mortality from abdominal aortic aneurysm. BMJ. 2004;329:1259.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Murphy WA, Zur ND, Gostner P, Knapp R, Recheis W, Seidler H. The Iceman: Discovery and Imaging. Radiology. 2003;226:614–29.

    Article  PubMed  Google Scholar 

  78. Virchow R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI--atheromatous affection of arteries. 1858. Nutr Rev. 1989;47:23–5.

    Article  CAS  PubMed  Google Scholar 

  79. Lehto S, Niskanen L, Suhonen M, Rönnemaa T, Laakso M. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16:978–83.

    Article  CAS  PubMed  Google Scholar 

  80. Lewis JR, Schousboe JT, Lim WH, Wong G, Zhu K, Lim EM, et al. Abdominal aortic calcification identified on lateral spine images from bone densitometers are a marker of generalized atherosclerosis in elderly women. Arterioscler Thromb Vasc Biol. 2016;36(1):166–73.

    Article  CAS  PubMed  Google Scholar 

  81. Lewis J, Schousboe J, Lim W, et al. Abdominal aortic calcification identified on images from bone densitometers and long-term cardiovascular outcomes in elderly women. J Bone Miner Res Conf. 2016;31. https://doi.org/10.1002/jbmr.3107.

  82. Ishii T, Asuwa N. Collagen and elastin degradation by matrix metalloproteinases and tissue inhibitors of matrix metalloproteinase in aortic dissection. Hum Pathol. 2000;31:640–6.

    Article  CAS  PubMed  Google Scholar 

  83. Rattazzi M, Rosenfeld ME. The multifaceted role of macrophages in cardiovascular calcification. Atherosclerosis. 2018; published online Feb 1. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2018.01.046.

  84. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb. 1994;14:230–4.

    Article  CAS  PubMed  Google Scholar 

  85. Cho I-J, Chang H-J, Park H-B, et al. Aortic calcification is associated with arterial stiffening, left ventricular hypertrophy, and diastolic dysfunction in elderly male patients with hypertension. J Hypertens. 2015;33:1633–41.

    Article  CAS  PubMed  Google Scholar 

  86. Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res. 2012;5:264–73.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Guo J, Fujiyoshi A, Willcox B, et al. Increased Aortic Calcification Is Associated With Arterial Stiffness Progression in Multiethnic Middle-Aged Men. Hypertension. 2017;69:102–8.

    Article  CAS  PubMed  Google Scholar 

  88. Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292:H1209–24.

    Article  CAS  PubMed  Google Scholar 

  89. Yang JW, Cho KI, Kim JH, et al. Wall shear stress in hypertensive patients is associated with carotid vascular deformation assessed by speckle tracking strain imaging. Clin Hypertens. 2014;20:10.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nicoll R, Henein M. Arterial calcification: a new perspective? Int J Cardiol. 2017;228:11–22.

    Article  CAS  PubMed  Google Scholar 

  91. Schousboe JT, Taylor BC, Kiel DP, Ensrud KE, Wilson KE, McCloskey EV. Abdominal aortic calcification detected on lateral spine images from a bone densitometer predicts incident myocardial infarction or stroke in older women. J Bone Miner Res. 2008;23(3):409–16.

    Article  PubMed  Google Scholar 

  92. Kauppila LI, Polak JF, Cupples LA, Hannan MT, Kiel DP, Wilson PW. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis. 1997;132:245–50.

    Article  CAS  PubMed  Google Scholar 

  93. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  CAS  PubMed  Google Scholar 

  94. Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometric estimation of aortic pulse wave velocity. Blood Press Monit. 2013;18:173–6.

    Article  PubMed  Google Scholar 

  95. Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  96. Lewis JR, Schousboe JT, Lim WH, et al. J Bone Miner Res. 2018; published online Feb 14. https://doi.org/10.1002/jbmr.3405.

  97. Witteman JM, Kok F, Van Saase JCM, Valkenburg H. Aortic calcification as a predictor of cardiovascular mortality. Lancet. 1986;328:1120–2.

    Article  Google Scholar 

  98. Nielsen ML, Pareek M, Gerke O, et al. Uncontrolled hypertension is associated with coronary artery calcification and electrocardiographic left ventricular hypertrophy: a case-control study. J Hum Hypertens. 2015;29:303–8.

    Article  CAS  PubMed  Google Scholar 

  99. Issever AS, Kentenich M, Kohlitz T, Diederichs G, Zimmermann E. Osteoporosis and atherosclerosis: a post-mortem MDCT study of an elderly cohort. Eur Radiol. 2013;23(10):2823–9.

    Article  CAS  PubMed  Google Scholar 

  100. Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O’Donnell CJ, Wilson PW. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham heart study. [erratum appears in Calcif tissue Int. 2004 Feb;74(2):208]. Calcif Tissue Int. 2001;68:271–6.

    Article  CAS  PubMed  Google Scholar 

  101. Cai T, Sun D, Duan Y, Wen P, Dai C, Yang J, et al. WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp Cell Res. 2016;345(2):206–17.

    Article  CAS  PubMed  Google Scholar 

  102. Vega OA, Lucero CMJ, Araya HF, et al. Wnt/β-catenin signaling activates expression of the bone-related transcription factor RUNX2 in select human osteosarcoma cell types. J Cell Biochem. 2017;118:3662–74.

    Article  CAS  PubMed  Google Scholar 

  103. Shi L, Cai G, Shi J, et al. Ossification of the posterior ligament is mediated by osterix via inhibition of the β-catenin signaling pathway. Exp Cell Res. 2016;349:53–9.

    Article  CAS  PubMed  Google Scholar 

  104. Moon YJ, Yun C-Y, Lee J-C, Kim JR, Park B-H, Cho E-S. Maturation of cortical bone suppresses periosteal osteoprogenitor proliferation in a paracrine manner. J Mol Histol. 2016;47:445–53.

    Article  CAS  PubMed  Google Scholar 

  105. Kook S-H, Heo JS, Lee J-C. Crucial roles of canonical Runx2-dependent pathway on Wnt1-induced osteoblastic differentiation of human periodontal ligament fibroblasts. Mol Cell Biochem. 2015;402:213–23.

    Article  CAS  PubMed  Google Scholar 

  106. Yu S, Yerges-Armstrong LM, Chu Y, Zmuda JM, Zhang Y. AP2 suppresses osteoblast differentiation and mineralization through down-regulation of Frizzled-1. Biochem J. 2015;465:395–404.

    Article  CAS  PubMed  Google Scholar 

  107. Yuan L-Q, Zhu J-H, Wang H-W, et al. RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS One. 2011;6:e29037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM. Osteoprotegerin is an α v β 3 -induced, NF-κB-dependent survival factor for endothelial cells. J Biol Chem. 2000;275:20959–62.

    Article  CAS  PubMed  Google Scholar 

  109. Sun Y, Byon CH, Yuan K, et al. Smooth muscle cell-specific Runx2 deficiency inhibits vascular calcification. Circ Res. 2012;111:543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang K, Zhang Y, Feng W, et al. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation. Arterioscler Thromb Vasc Biol. 2017;37(10):1933–43.

    Article  CAS  PubMed  Google Scholar 

  111. Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375:1532–43.

    Article  CAS  PubMed  Google Scholar 

  112. Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, et al. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of Romosozumab in men with osteoporosis. J Clin Endocrinol Metab. 2018;103(9):3183–93.

    Article  PubMed  Google Scholar 

  113. Touw WA, Ueland T, Bollerslev J, Schousboe JT, Lim WH, Wong G, et al. Association of Circulating Wnt Antagonists with Severe Abdominal Aortic Calcification in elderly women. J Endocr Soc. 2017;1(1):26–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML. The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone. 2013;56:42–7.

    Article  CAS  PubMed  Google Scholar 

  115. Krishna SM, Seto S-W, Jose RJ, et al. Wnt signaling pathway inhibitor Sclerostin inhibits angiotensin II–induced aortic aneurysm and AtherosclerosisHighlights. Arterioscler Thromb Vasc Biol. 2017;37:553–66.

    Article  CAS  PubMed  Google Scholar 

  116. Acıbucu F, Dokmetas H, Acıbucu D, Kılıclı F, Aydemir M, Cakmak E. Effect of vitamin D treatment on serum Sclerostin level. Exp Clin Endocrinol Diabetes. 2017;125:634–7.

    Article  CAS  PubMed  Google Scholar 

  117. Sankaralingam A, Roplekar R, Turner C, Dalton RN, Hampson G. Changes in Dickkopf-1 (DKK1) and Sclerostin following a loading dose of vitamin D 2 (300,000 IU). J Osteoporos. 2014;2014:682763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Breslavsky A, Frand J, Matas Z, Boaz M, Barnea Z, Shargorodsky M. Effect of high doses of vitamin D on arterial properties, adiponectin, leptin and glucose homeostasis in type 2 diabetic patients. Clin Nutr. 2013;32:970–5.

    Article  CAS  PubMed  Google Scholar 

  119. Larsen T, Mose FH, Bech JN, Hansen AB, Pedersen EB. Effect of cholecalciferol supplementation during winter months in patients with hypertension: a randomized, placebo-controlled trial. Am J Hypertens. 2012;25:1215–22.

    Article  CAS  PubMed  Google Scholar 

  120. Dreyer G, Tucker AT, Harwood SM, Pearse RM, Raftery MJ, Yaqoob MM. Ergocalciferol and microcirculatory function in chronic kidney disease and concomitant vitamin D deficiency: an exploratory, double blind, Randomised Controlled Trial. PLoS One. 2014;9:e99461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rejnmark L, Bislev LS, Cashman KD, et al. Non-skeletal health effects of vitamin D supplementation: a systematic review on findings from meta-analyses summarizing trial data. PLoS One. 2017;12:e0180512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sambrook PN, Chen JS, Simpson JM, March LM. Impact of adverse news media on prescriptions for osteoporosis: effect on fractures and mortality. Med J Aust. 2010;193(3):154–6.

    PubMed  Google Scholar 

  123. Kranenburg G, Bartstra JW, Weijmans M, et al. Bisphosphonates for cardiovascular risk reduction: a systematic review and meta-analysis. Atherosclerosis. 2016;252:106–15.

    Article  CAS  PubMed  Google Scholar 

  124. Kawahara T, Nishikawa M, Kawahara C, Inazu T, Sakai K, Suzuki G. Atorvastatin, etidronate, or both in patients at high risk for atherosclerotic aortic plaques: a randomized, controlled trial. Circulation. 2013;127:2327–35.

    Article  CAS  PubMed  Google Scholar 

  125. Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG. Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am J Kidney Dis. 2010;56:57–68.

    Article  CAS  PubMed  Google Scholar 

  126. Cummings SR, Martin JS, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    Article  CAS  PubMed  Google Scholar 

  127. Samelson EJ, Miller PD, Christiansen C, et al. RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res. 2014;29:450–7.

    Article  CAS  PubMed  Google Scholar 

  128. Ueki K, Yamada S, Tsuchimoto A, et al. Rapid progression of vascular and soft tissue calcification while being managed for severe and persistent hypocalcemia induced by Denosumab treatment in a patient with multiple myeloma and chronic kidney disease. Intern Med. 2015;54:2637–42.

    Article  CAS  PubMed  Google Scholar 

  129. Scott D, Blizzard L, Fell J, Jones G. Prospective associations between ambulatory activity, body composition and muscle function in older adults. Scand J Med Sci Sports. 2011;21:e168–75.

    Article  CAS  PubMed  Google Scholar 

  130. Tarantino G, Costantini S, Finelli C, et al. Is serum Interleukin-17 associated with early atherosclerosis in obese patients? J Transl Med. 2014;12:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Alexandersen P, Tankó LB, Bagger YZ, Jespersen J, Skouby SO, Christiansen C. Associations between aortic calcification and components of body composition in elderly men*. Obesity. 2006;14:1571–8.

    Article  PubMed  Google Scholar 

  132. Szulc P, Hofbauer LC, Rauner M, Goettsch C, Chapurlat R, Schoppet M. Serum myostatin levels are negatively associated with abdominal aortic calcification in older men: the STRAMBO study. Eur J Endocrinol. 2012;167:873–80.

    Article  CAS  PubMed  Google Scholar 

  133. Jensky NE, Allison MA, Loomba R, et al. Null association between abdominal muscle and calcified atherosclerosis in community-living persons without clinical cardiovascular disease: the multi-ethnic study of atherosclerosis. Metabolism. 2013;62:1562–9.

    Article  CAS  PubMed  Google Scholar 

  134. Idoate F, Cadore EL, Casas-Herrero A, et al. Adipose tissue compartments, muscle mass, muscle fat infiltration, and coronary calcium in institutionalized frail nonagenarians. Eur Radiol. 2015;25:2163–75.

    Article  PubMed  Google Scholar 

  135. Wassel CL, Laughlin GA, Saad SD, Araneta MRG, Wooten W, Barrett-Connor E, et al. Associations of abdominal muscle area with 4-year change in coronary artery calcium differ by ethnicity among post-menopausal women. Ethn Dis. 2015;25(4):435–42.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ko B-J, Chang Y, Jung H-S, et al. Relationship between low relative muscle mass and coronary artery calcification in healthy AdultsSignificance. Arterioscler Thromb Vasc Biol. 2016;36:1016–21.

    Article  CAS  PubMed  Google Scholar 

  137. Idoate F, Cadore EL, Casas-Herrero A, et al. Noncoronary vascular calcification, bone mineral density, and muscle mass in institutionalized frail nonagenarians. Rejuvenation Res. 2017;20:298–308.

    Article  CAS  PubMed  Google Scholar 

  138. Spahillari A, Mukamal KJ, DeFilippi C, et al. The association of lean and fat mass with all-cause mortality in older adults: the cardiovascular health study. Nutr Metab Cardiovasc Dis. 2016;26:1039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chuang S-Y, Hsu Y-Y, Chen RC-Y, Liu W-L, Pan W-H. Abdominal obesity and low skeletal muscle mass jointly predict Total mortality and cardiovascular mortality in an elderly Asian population. J Gerontol A Biol Sci Med Sci. 2016;71(8):1049–55.

    Article  PubMed  Google Scholar 

  140. Elliott B, Renshaw D, Getting S, Mackenzie R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol. 2012;205:324–40.

    Article  CAS  Google Scholar 

  141. Hamrick MW, Shi X, Zhang W, Pennington C, Thakore H, Haque M, et al. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone. 2007;40(6):1544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Artaza JN, Singh R, Ferrini MG, Braga M, Tsao J, Gonzalez-Cadavid NF. Myostatin promotes a fibrotic phenotypic switch in multipotent C3H 10T1/2 cells without affecting their differentiation into myofibroblasts. J Endocrinol. 2008;196:235–49.

    Article  CAS  PubMed  Google Scholar 

  143. Saely CH, Dyballa T, Vonbank A, et al. Type 2 diabetes but not coronary atherosclerosis is an independent determinant of impaired mobility in angiographied coronary patients. Diabetes Res Clin Pract. 2008;82:185–9.

    Article  PubMed  Google Scholar 

  144. Abizanda Soler P, Paterna Mellinas G, Martín Sebastiá E, Casado Moragón L, López Jiménez E, Martínez SE. Aterosclerosis subclínica, un predictor de limitación funcional al año en ancianos con alto nivel funcional: estudio Albacete. Rev Esp Geriatr Gerontol. 2010;45:125–30.

    Article  PubMed  Google Scholar 

  145. Den Ouden MEM, Schuurmans MJ, Arts EMA, et al. Atherosclerosis and physical functioning in older men, a longitudinal study. J Nutr Health Aging. 2013;17:97–104.

    Article  Google Scholar 

  146. Park J, Park H. Muscle strength and carotid artery flow velocity is associated with increased risk of atherosclerosis in adults. Cardiol J. 2017;24:385–92.

    Article  PubMed  Google Scholar 

  147. Shimizu Y, Sato S, Koyamatsu J, et al. Handgrip strength and subclinical carotid atherosclerosis in relation to platelet levels among hypertensive elderly Japanese. Oncotarget. 2017;8:69362–9.

    PubMed  PubMed Central  Google Scholar 

  148. Suwa M, Imoto T, Kida A, Yokochi T, Iwase M, Kozawa K. Association of body flexibility and carotid atherosclerosis in Japanese middle-aged men: a cross-sectional study. BMJ Open. 2018;8:e019370.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Everson-Rose SA, Mendes de Leon CF, Roetker NS, Lutsey PL, Alonso A. Subclinical cardiovascular disease and changes in self-reported mobility: multi-ethnic study of atherosclerosis. Journals Gerontol A Biol Sci Med Sci. 2018;73:218–24.

    Article  Google Scholar 

  150. Jadczak AD, Makwana N, Luscombe-Marsh N, Visvanathan R, Schultz TJ. Effectiveness of exercise interventions on physical function in community-dwelling frail older people. JBI Database System Rev Implement Rep. 2018;16:752–75.

    Article  PubMed  Google Scholar 

  151. Lai C-C, Tu Y-K, Wang T-G, Huang Y-T, Chien K-L. Effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people: a systematic review and network meta-analysis. Age Ageing. 2018;47(3):367–73.

    Article  PubMed  Google Scholar 

  152. Rossow LM, Fahs CA, Thiebaud RS, et al. Arterial stiffness and blood flow adaptations following eight weeks of resistance exercise training in young and older women. Exp Gerontol. 2014;53:48–56.

    Article  PubMed  Google Scholar 

  153. Shiotsu Y, Watanabe Y, Tujii S, Yanagita M. Effect of exercise order of combined aerobic and resistance training on arterial stiffness in older men. Exp Gerontol. 2018;111:27–34.

    Article  PubMed  Google Scholar 

  154. Green D, Cheetham C, Mavaddat L, Watts K, Best M, Taylor R, et al. Effect of lower limb exercise on forearm vascular function: contribution of nitric oxide. Am J Physiol Heart Circ Physiol. 2002;283(3):H899–907.

    Article  CAS  PubMed  Google Scholar 

  155. Endes S, Schaffner E, Caviezel S, et al. Long-term physical activity is associated with reduced arterial stiffness in older adults: longitudinal results of the SAPALDIA cohort study. Age Ageing. 2016;45:110–5.

    Article  PubMed  Google Scholar 

  156. Wildman RP, Mackey RH, Bostom A, Thompson T, Sutton-Tyrrell K. Measures of obesity are associated with vascular stiffness in young and older adults. Hypertension. 2003;42:468–73.

    Article  CAS  PubMed  Google Scholar 

  157. Jarrell JC, Morin J, Vasquez K, Cuneo GJ, Kossodo S, Peterson JD. Imaging of Cathepsin K activity in rodent models of bone turnover and soft tissue calcification. Mol Imaging Biol. 2012;1:S1741.

    Google Scholar 

  158. Shanbhogue VV, Støving RK, Frederiksen KH, Hanson S, Brixen K, Gram J, et al. Bone structural changes after gastric bypass surgery evaluated by HR-pQCT: a two-year longitudinal study. Eur J Endocrinol. 2017;176(6):685–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Szulc P, Schoppet M, Goettsch C, et al. Endocrine and clinical correlates of Myostatin serum concentration in men—the STRAMBO study. J Clin Endocrinol Metab. 2012;97:3700–8.

    Article  CAS  PubMed  Google Scholar 

  160. Aihara K, Azuma H, Akaike M, et al. Disruption of nuclear vitamin D receptor gene causes enhanced Thrombogenicity in mice. J Biol Chem. 2004;279:35798–802.

    Article  CAS  PubMed  Google Scholar 

  161. Chen S, Law CS, Grigsby CL, et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac HypertrophyClinical perspective. Circulation. 2011;124:1838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Norman PE, Powell JT. Vitamin D and cardiovascular disease. Circ Res. 2014;114:379–93.

    Article  CAS  PubMed  Google Scholar 

  163. Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Korfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41:105–12.

    Article  CAS  PubMed  Google Scholar 

  164. Al Mheid I, Patel R, Murrow J, et al. Vitamin D status is associated with arterial stiffness and vascular dysfunction in healthy humans. J Am Coll Cardiol. 2011;58:186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Tomson J, Hin H, Emberson J, et al. Effects of vitamin D on blood pressure, arterial stiffness, and cardiac function in older people after 1 year: BEST-D (biochemical efficacy and safety trial of vitamin D). J Am Heart Assoc. 2017;6:e005707.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sluyter JD, Camargo CA, Stewart AW, et al. Effect of monthly, high-dose, Long-Term Vitamin D Supplementation on Central Blood Pressure Parameters: A Randomized Controlled Trial Substudy. J Am Heart Assoc. 2017;6:e006802.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Witte KK, Byrom R, Gierula J, et al. Effects of vitamin D on cardiac function in patients with chronic HF: the VINDICATE study. J Am Coll Cardiol. 2016;67:2593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chung M, Tang AM, Fu Z, Wang DD, Newberry SJ. Calcium intake and cardiovascular disease risk. Ann Intern Med. 2016;165:856.

    Article  PubMed  Google Scholar 

  169. Reid IR, Gamble GD, Bolland MJ. Circulating calcium concentrations, vascular disease and mortality: a systematic review. J Intern Med. 2016;279(6):524–40.

    Article  CAS  PubMed  Google Scholar 

  170. Harvey NC, Biver E, Kaufman J-M, Bauer J, Branco J, Brandi ML, et al. The role of calcium supplementation in healthy musculoskeletal ageing. Osteoporos Int. 2017;28(2):447–62.

    Article  CAS  PubMed  Google Scholar 

  171. Michaelsson K, Melhus H, Warensjo Lemming E, Wolk A, Byberg L. Long term calcium intake and rates of all cause and cardiovascular mortality: community based prospective longitudinal cohort study. BMJ. 2013;346:f228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Khan B, Nowson CA, Daly RM, et al. Higher dietary calcium intakes are associated with reduced risks of fractures, cardiovascular events, and mortality: a prospective cohort study of older men and women. J Bone Miner Res. 2015;30:1758–66.

    Article  CAS  PubMed  Google Scholar 

  173. Kim JH, Yoon JW, Kim KW, et al. Increased dietary calcium intake is not associated with coronary artery calcification. Int J Cardiol. 2012;157:429–31.

    Article  PubMed  Google Scholar 

  174. Anderson JJB, Kruszka B, Delaney JAC, et al. Calcium intake from diet and supplements and the risk of coronary artery calcification and its progression among older adults: 10-year follow-up of the multi-ethnic study of atherosclerosis (MESA). J Am Heart Assoc. 2016;5:e003815.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was required in undertaking this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Rodriguez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

No ethics committee approval was required in undertaking this work.

Informed Consent

No informed consent was required in undertaking this work as work did not involve any human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, A.J., Scott, D. & Ebeling, P.R. Exploring the Links Between Common Diseases of Ageing—Osteoporosis, Sarcopenia and Vascular Calcification. Clinic Rev Bone Miner Metab 17, 1–23 (2019). https://doi.org/10.1007/s12018-018-9251-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-018-9251-2

Keywords

Navigation