Skip to main content

Advertisement

Log in

Imaging Mechanical Muscle–Bone Relationships: How to See the Invisible

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The ontogenetic adaptation of bones to their habitual loads offers a rationale for imaging muscle–bone relationships. Provided that bones adapt to strains that are chiefly determined by muscle contractions, information from muscle and bone scans allows comparing measures of bone stiffness and strength with surrogate measures for muscular force generation. Prediction of the mechanical behavior of bone is nowadays well possible by peripheral quantitative computed tomography (pQCT). However, prediction of muscle forces is not currently feasible. pQCT offers the opportunity to outline gross muscle cross-sectional area (CSA) as a surrogate measure of the force-generating capacity of muscle groups. Ultrasound and magnetic resonance (MR) imaging allow identification of single muscles. In addition, ultrasound also offers the possibility to assess muscle architecture and thus to assess physiological CSA as a more likely predictor of muscle forces than anatomical CSA. Although there is currently no single technique in use to simultaneously assess muscle volume, CSA, and architecture at the level of single muscles, this could in future be possible by MR diffusion imaging. Current attempts to quantify muscle “quality” are not directly related to the force-generating capacity and thus only of indirect help. Hence, one should hope that better imaging assessments of muscle will be possible in future. However, despite these current limitations, muscle–bone strength indicators have been defined that can already be used today in order to differentiate primary and secondary bone disorders thus underlining the validity of the “muscle–bone” approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BMC:

Bone mineral content

CSA:

Cross-sectional area

CT:

Computed tomography

DXA:

Dual energy X-ray absorptiometry

MBSI:

Muscle–bone strength index

MM:

Muscle mass

MRI:

Magnetic resonance imaging

pQCT:

Peripheral quantitative computed tomography

QCT:

Quantitative computed tomography

References

  1. Thompson DA. On growth and form. Cambridge: Cambridge University Press; 1917.

    Google Scholar 

  2. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ferretti JL, Capozza RF, Zanchetta JR. Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone. 1996;18(2):97.

    Article  CAS  PubMed  Google Scholar 

  4. Martin DE, Severns AE, Kabo JM. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data. J Biomech. 2004;37:1289–93.

    Article  PubMed  Google Scholar 

  5. Currey JD. Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond B Biol Sci. 1984;304(1121):509.

    Article  CAS  PubMed  Google Scholar 

  6. Gordon JE. Science of structures and materials. New York: WH Freeman & Co; 1988.

    Google Scholar 

  7. Ferretti JL, Schiessl H, Frost HM. On new opportunities for absorptiometry. J Clin Densitom. 1998;1(1):41.

    Article  CAS  PubMed  Google Scholar 

  8. Capozza RF, Rittweger J, Reina PS, Mortarino P, Nocciolino LM, Feldman S, et al. pQCT-assessed relationships between diaphyseal design and cortical bone mass and density in the tibiae of healthy sedentary and trained men and women. J Musculoskelet Neuronal Interact. 2013;13(2):195–205 Epub 2013/06/04.

    CAS  PubMed  Google Scholar 

  9. Maganaris CN, Rittweger J, Narici MV. Adaptive Processes in Human Bone and Tendon. In: Cardinale M, Newton R, Nosaka K, editors. Strength and conditioning biological principles and practical applications. Oxford: Wiley; 2011. p. 137–47.

    Google Scholar 

  10. McArdle WD, Katch FI, Katch VL. Muscular strength: training muscles to become stronger. Exercise physiology. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 500.

    Google Scholar 

  11. Rubin CT, Lanyon LE. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res. 1987;5(2):300–10.

    Article  CAS  PubMed  Google Scholar 

  12. Mosley JR, March BM, Lynch J, Lanyon LE. Strain magnitude related changes in whole bone architecture in growing rats. Bone. 1997;20(3):191.

    Article  CAS  PubMed  Google Scholar 

  13. Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone. 1998;23(4):313–8.

    Article  CAS  PubMed  Google Scholar 

  14. Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12(9):1480.

    Article  CAS  PubMed  Google Scholar 

  15. Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW. Control of the size of the human muscle mass. Annu Rev Physiol. 2004;66:799–828.

    Article  CAS  PubMed  Google Scholar 

  16. Ammann P, Laib A, Bonjour JP, Meyer JM, Ruegsegger P, Rizzoli R. Dietary essential amino acid supplements increase bone strength by influencing bone mass and bone microarchitecture in ovariectomized adult rats fed an isocaloric low-protein diet. J Bone Miner Res. 2002;17(7):1264–72.

    Article  CAS  PubMed  Google Scholar 

  17. Hill AV. The heat of shortening and dynamic constants of muscle. Proc R Soc Lond Ser B. 1938;126:136.

    Article  Google Scholar 

  18. Westing SH, Seger JY, Karlson E, Ekblom B. Eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man. Eur J Appl Physiol Occup Physiol. 1988;58(1–2):100–4 Epub 1988/01/01.

    Article  CAS  PubMed  Google Scholar 

  19. Wilhite MR, Cohen ER, Wilhite SC. Reliability of concentric and eccentric measurements of quadriceps performance using the KIN-COM dynamometer: the effect of testing order for three different speeds. J Orthop Sports Phys Ther. 1992;15(4):175–82 Epub 1992/01/01.

    Article  CAS  PubMed  Google Scholar 

  20. Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol. 1996;496(Pt 1):287–97 Epub 1996/10/01.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368–73.

    Article  CAS  PubMed  Google Scholar 

  22. Capozza R, Feldman S, Mortarino P, Reina P, Schiessl H, Rittweger J, et al. Structural analysis of the human tibia by tomographic (pQCT) serial scans. J Anat. 2010;216:470–81.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rittweger J, Beller G, Ehrig J, Jung C, Koch U, Ramolla J, et al. Bone-muscle strength indices for the human lower leg. Bone. 2000;27(2):319–26.

    Article  CAS  PubMed  Google Scholar 

  24. Tilney F, Pike FH. Muscular coordination experimentally studies in its relation to the cerebellum. Arch Neurol Psychiatr. 1925;13:289–309.

    Article  Google Scholar 

  25. Hobara H, Kanosue K, Suzuki S. Changes in muscle activity with increase in leg stiffness during hopping. Neurosci Lett. 2007;418(1):55–9 Epub 2007/03/21.

    Article  CAS  PubMed  Google Scholar 

  26. Humphrey DR, Reed DJ. Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles. Adv Neurol. 1983;39:347–72 Epub 1983/01/01.

    CAS  PubMed  Google Scholar 

  27. Carter RR, Crago PE, Gorman PH. Nonlinear stretch reflex interaction during cocontraction. J Neurophysiol. 1993;69(3):943–52 Epub 1993/03/01.

    CAS  PubMed  Google Scholar 

  28. Hagood S, Solomonow M, Baratta R, Zhou BH, D’Ambrosia R. The effect of joint velocity on the contribution of the antagonist musculature to knee stiffness and laxity. Am J Sports Med. 1990;18(2):182–7 Epub 1990/03/01.

    Article  CAS  PubMed  Google Scholar 

  29. Barber L, Barrett R, Lichtwark G. Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle. J Biomech. 2009;42(9):1313–9 Epub 2009/04/21.

    Article  PubMed  Google Scholar 

  30. Galban CJ, Maderwald S, Uffmann K, de Greiff A, Ladd ME. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur J Appl Physiol. 2004;93(3):253–62 Epub 2004/08/24.

    Article  PubMed  Google Scholar 

  31. D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol. 2003;552(Pt 2):499–511.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Jones DA, Round JM, Edwards RH, Grindwood SR, Tofts PS. Size and composition of the calf and quadriceps muscles in Duchenne muscular dystrophy. A tomographic and histochemical study. J Neurol Sci. 1983;60(2):307–22.

    Article  CAS  PubMed  Google Scholar 

  33. Taaffe DR, Henwood TR, Nalls MA, Walker DG, Lang TF, Harris TB. Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults. Gerontology. 2009;55(2):217–23 Epub 2008/12/09.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc. 2002;50(5):897–904 Epub 2002/05/25.

    Article  PubMed  Google Scholar 

  35. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res. 2010;25(3):513–9 Epub 2010/04/28.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Rittweger J, Moller K, Bareille MP, Felsenberg D, Zange J. Muscle X-ray attenuation is not decreased during experimental bed rest. Muscle Nerve. 2013;47(5):722–30 Epub 2013/03/23.

    Article  PubMed  Google Scholar 

  37. Schiessl H, Frost HM, Jee WS. Estrogen and bone-muscle strength and mass relationships. Bone. 1998;22(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  38. Ferretti JL, Capozza RF, Cointry GR, Garcia SL, Plotkin H, Alvarez Filgueira ML, et al. Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone. 1998;22(6):683.

    Article  CAS  PubMed  Google Scholar 

  39. Schoenau E, Neu CM, Mokov E, Wassmer G, Manz F. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab. 2000;85(3):1095.

    Article  CAS  PubMed  Google Scholar 

  40. Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM. Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone. 2001;29(4):388–92 Epub 2001/10/12.

    Article  CAS  PubMed  Google Scholar 

  41. Rantalainen T, Nikander R, Kukuljan S, Daly RM. Mid-femoral and mid-tibial muscle cross-sectional area as predictors of tibial bone strength in middle-aged and older men. J Musculoskelet Neuronal Interact. 2013;13(3):235–44 Epub 2013/08/31.

    Google Scholar 

  42. Ireland A, Maden-Wilkinson T, McPhee J, Cooke K, Narici M, Degens H, et al. Upper limb muscle–bone asymmetries and bone adaptation in elite youth tennis players. Med Sci Sports Exerc. 2013;45(9):1749–58 Epub 2013/03/12.

    Article  PubMed  Google Scholar 

  43. Bogenschutz ED, Smith HD, Warden SJ. Midhumerus adaptation in fast-pitch softballers and the effect of throwing mechanics. Med Sci Sports Exerc. 2011;43(9):1698–706 Epub 2011/02/12.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lindsay R, Cosman F, Harrison TR, Kasper D, Braunwald E, Fauci A, et al. Ostoporosis. Harrison’s principles of internal medicine. New York: Mc Graw-Hill; 2004. p. 2226.

    Google Scholar 

  45. Schonau E, Schwahn B, Rauch F. The muscle–bone relationship: methods and management—perspectives in glycogen storage disease. Eur J Pediatr. 2002;161(Suppl 1):S50.

    PubMed  Google Scholar 

  46. Schönau E, Fricke O. Muscle and bone: a functional unit. Deutsches Aerzteblatt. 2006;103(50):A3414–9.

    Google Scholar 

  47. Capozza RF, Cure-Cure C, Cointry GR, Meta M, Cure P, Rittweger J, et al. Association between low lean body mass and osteoporotic fractures after menopause. New York, NY: Menopause; 2008.

    Google Scholar 

Download references

Disclosures

Conflict of interest

Jörn Rittweger, José-Luis Ferretti declare that they have no conflict of interest.

Animal/Human Studies

This review does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Rittweger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittweger, J., Ferretti, JL. Imaging Mechanical Muscle–Bone Relationships: How to See the Invisible. Clinic Rev Bone Miner Metab 12, 66–76 (2014). https://doi.org/10.1007/s12018-014-9166-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-014-9166-5

Keywords

Navigation