Skip to main content
Log in

Antidepressant-Like and Anxiolytic-Like Effects of ZBD-2, a Novel Ligand for the Translocator Protein (18 kDa)

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Activation of translocator protein (18 kDa) (TSPO) plays an important role to mediate rapid anxiolytic efficacy in stress response and stress-related disorders by the production of neurosteroids. However, little is known about the ligand of TSPO on the anxiety-like and depressive behaviors and the underlying mechanisms in chronic unpredictable mild stress (UCMS) mice. In the present study, a novel ligand of TSPO, ZBD-2 [N-benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide] synthesized by our laboratory, was used to evaluate the anxiolytic and antidepressant efficacy and to elucidate the underlying mechanisms. ZBD-2 (3 mg/kg) significantly attenuated anxiety-like and depressive behaviors in the UCMS mice, which was blocked by TSPO antagonist PK11195 (3 mg/kg). Treatment of ZBD-2 reversed the decrease in biogenic amines (norepinephrine, dopamine, and serotonin) in the brain region of hippocampus in the UCMS mice. The decreases in TSPO, GluN2B-containing N-methyl-d-aspartate (NMDA) receptors, GluA1, p-GluA1-Ser831, p-GluA1-Ser845, PSD-95, and GABAA-a2 were integrated with the increases of CaMKII and iNOS levels in the hippocampus of the UCMS mice. ZBD-2 significantly reversed the changes of above proteins. However, ZBD-2 or PK11195 treatment did not affect the levels of GluN2A-containing NMDA receptors and the total levels of GAD67. Our study provides strong evidences that ZBD-2 has a therapeutic effect on chronic stress-related disorders such as depression and anxiety through regulating the biogenic amine levels and the synaptic proteins in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

AMPAR:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

CNS:

Central nervous system

DA:

Dopamine

EPM:

Elevated plus maze

FST:

Forced swim test

GABA:

γ-Aminobutyric acid

NE:

Norepinephrine

NMDA:

N-Methyl-d-aspartate

OF:

Open field

SSRIs:

Selective serotonin reuptake inhibitors

TSPO:

Translocator protein (18 kDa)

TST:

Tail suspension test

UCMS:

Chronic unpredictable mild stress

ZBD-2:

N-Benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide

References

  • Albert, P. R., Vahid-Ansari, F., & Luckhart, C. (2014). Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: Pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Frontiers in Behavioral Neuroscience, 8, 199. doi:10.3389/fnbeh.2014.00199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, I. M., Nutt, D. J., & Deakin, J. F. (2000). Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 1993 British Association for Psychopharmacology guidelines. British Association for Psychopharmacology. Journal of Psychopharmacology, 14(1), 3–20.

    Article  CAS  PubMed  Google Scholar 

  • Anholt, R. R., Pedersen, P. L., De Souza, E. B., & Snyder, S. H. (1986). The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. Journal of Biological Chemistry, 261(2), 576–583.

    CAS  PubMed  Google Scholar 

  • Belelli, D., & Lambert, J. J. (2005). Neurosteroids: Endogenous regulators of the GABA(A) receptor. Nature Reviews Neuroscience, 6(7), 565–575. doi:10.1038/nrn1703.

    Article  CAS  PubMed  Google Scholar 

  • Bourin, M., Mocaer, E., & Porsolt, R. (2004). Antidepressant-like activity of S 20098 (agomelatine) in the forced swimming test in rodents: Involvement of melatonin and serotonin receptors. Journal of Psychiatry and Neuroscience, 29(2), 126–133.

    PubMed  PubMed Central  Google Scholar 

  • Cates, L. N., Roberts, A. J., Huitron-Resendiz, S., & Hedlund, P. B. (2013). Effects of lurasidone in behavioral models of depression. Role of the 5-HT(7) receptor subtype. Neuropharmacology, 70, 211–217. doi:10.1016/j.neuropharm.2013.01.023.

    Article  CAS  PubMed  Google Scholar 

  • Celada, P., Puig, M., Amargos-Bosch, M., Adell, A., & Artigas, F. (2004). The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. Journal of Psychiatry and Neuroscience, 29(4), 252–265.

    PubMed  PubMed Central  Google Scholar 

  • De Benedetto, G. E., Fico, D., Pennetta, A., Malitesta, C., Nicolardi, G., Lofrumento, D. D., et al. (2014). A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of Pharmaceutical and Biomedical Analysis, 98, 266–270. doi:10.1016/j.jpba.2014.05.039.

    Article  PubMed  Google Scholar 

  • Dranovsky, A., & Hen, R. (2006). Hippocampal neurogenesis: Regulation by stress and antidepressants. Biological Psychiatry, 59(12), 1136–1143. doi:10.1016/j.biopsych.2006.03.082.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., Szabo, S. T., Gray, N. A., & Manji, H. K. (2004). Focus on CaMKII: A molecular switch in the pathophysiology and treatment of mood and anxiety disorders. International Journal of Neuropsychopharmacology, 7(3), 243–248. doi:10.1017/S1461145704004432.

    Article  CAS  PubMed  Google Scholar 

  • Elhwuegi, A. S. (2004). Central monoamines and their role in major depression. Progress in Neuropsychopharmacology and Biological Psychiatry, 28(3), 435–451. doi:10.1016/j.pnpbp.2003.11.018.

    Article  CAS  Google Scholar 

  • Fasick, V., Spengler, R. N., Samankan, S., Nader, N. D., & Ignatowski, T. A. (2015). The hippocampus and TNF: Common links between chronic pain and depression. Neuroscience and Biobehavioral Reviews, 53, 139–159. doi:10.1016/j.neubiorev.2015.03.014.

    Article  CAS  PubMed  Google Scholar 

  • Gavish, M., Bachman, I., Shoukrun, R., Katz, Y., Veenman, L., Weisinger, G., et al. (1999). Enigma of the peripheral benzodiazepine receptor. Pharmacological Reviews, 51(4), 629–650.

    CAS  PubMed  Google Scholar 

  • Gavish, M., Laor, N., Bidder, M., Fisher, D., Fonia, O., Muller, U., et al. (1996). Altered platelet peripheral-type benzodiazepine receptor in posttraumatic stress disorder. Neuropsychopharmacology, 14(3), 181–186. doi:10.1016/0893-133X(95)00078-R.

    Article  CAS  PubMed  Google Scholar 

  • Girard, C., Liu, S., Adams, D., Lacroix, C., Sineus, M., Boucher, C., et al. (2012). Axonal regeneration and neuroinflammation: Roles for the translocator protein 18 kDa. Journal of Neuroendocrinology, 24(1), 71–81. doi:10.1111/j.1365-2826.2011.02215.x.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y. Y., Liu, S. B., Cui, G. B., Ma, L., Feng, B., Xing, J. H., et al. (2012). Acute stress induces down-regulation of large-conductance Ca2+-activated potassium channels in the lateral amygdala. Journal of Physiology, 590(Pt 4), 875–886. doi:10.1113/jphysiol.2011.223784.

    Article  CAS  PubMed  Google Scholar 

  • Haase, J., & Brown, E. (2015). Integrating the monoamine, neurotrophin and cytokine hypotheses of depression—A central role for the serotonin transporter? Pharmacology & Therapeutics, 147, 1–11. doi:10.1016/j.pharmthera.2014.10.002.

    Article  CAS  Google Scholar 

  • Ibarguen-Vargas, Y., Surget, A., Vourc’h, P., Leman, S., Andres, C. R., Gardier, A. M., et al. (2009). Deficit in BDNF does not increase vulnerability to stress but dampens antidepressant-like effects in the unpredictable chronic mild stress. Behavioural Brain Research, 202(2), 245–251. doi:10.1016/j.bbr.2009.03.040.

    Article  CAS  PubMed  Google Scholar 

  • Kallarackal, A. J., Kvarta, M. D., Cammarata, E., Jaberi, L., Cai, X., Bailey, A. M., et al. (2013). Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. Journal of Neuroscience, 33(40), 15669–15674. doi:10.1523/JNEUROSCI.2588-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoshnoodi, M., Fakhraei, N., & Dehpour, A. R. (2015). Possible involvement of nitric oxide in antidepressant-like effect of silymarin in male mice. Pharmaceutical Biology, 53(5), 739–745. doi:10.3109/13880209.2014.942787.

    Article  CAS  PubMed  Google Scholar 

  • Kita, A., Kohayakawa, H., Kinoshita, T., Ochi, Y., Nakamichi, K., Kurumiya, S., et al. (2004). Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand. British Journal of Pharmacology, 142(7), 1059–1072. doi:10.1038/sj.bjp.0705681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo, J. W., & Duman, R. S. (2008). IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proceedings of the National Academy of Sciences, 105(2), 751–756. doi:10.1073/pnas.0708092105.

    Article  CAS  Google Scholar 

  • Li, X. B., Guo, H. L., Shi, T. Y., Yang, L., Wang, M., Zhang, K., et al. (2015). Neuroprotective effects of a novel translocator protein (18 kDa) ligand, ZBD-2, against focal cerebral ischemia in vivo and NMDA-induced neurotoxicity in vitro. Clinical and Experimental Pharmacology and Physiology. doi:10.1111/1440-1681.12460.

    PubMed Central  Google Scholar 

  • Li, K., Zhou, T., Liao, L., Yang, Z., Wong, C., Henn, F., et al. (2013). betaCaMKII in lateral habenula mediates core symptoms of depression. Science, 341(6149), 1016–1020. doi:10.1126/science.1240729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, B. F., Huang, F., Wang, H. T., Wang, G. H., Yuan, X., Zhang, M. Z., et al. (2015). Involvement of norepinephrine and serotonin system in antidepressant-like effects of hederagenin in the rat model of unpredictable chronic mild stress-induced depression. Pharmaceutical Biology, 53(3), 368–377. doi:10.3109/13880209.2014.922586.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Xu, C., Wu, X., Liu, F., Du, Y., Sun, J., et al. (2015). Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience, 294, 193–205. doi:10.1016/j.neuroscience.2015.02.053.

    Article  CAS  PubMed  Google Scholar 

  • Lothe, A., Saoud, M., Bouvard, S., Redoute, J., Lerond, J., & Ryvlin, P. (2012). 5-HT(1A) receptor binding changes in patients with major depressive disorder before and after antidepressant treatment: A pilot [(1)(8)F]MPPF positron emission tomography study. Psychiatry Research, 203(1), 103–104. doi:10.1016/j.pscychresns.2011.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Murata, Y., Yanagihara, Y., Mori, M., Mine, K., & Enjoji, M. (2015). Chronic treatment with tandospirone, a serotonin 1A receptor partial agonist, inhibits psychosocial stress-induced changes in hippocampal neurogenesis and behavior. Journal of Affective Disorders, 180, 1–9. doi:10.1016/j.jad.2015.03.054.

    Article  CAS  PubMed  Google Scholar 

  • Myers, K. M., Carlezon, W. A, Jr., & Davis, M. (2011). Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology, 36(1), 274–293. doi:10.1038/npp.2010.88.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, E. M., & Philbrick, A. M. (2012). Avoiding serotonin syndrome: The nature of the interaction between tramadol and selective serotonin reuptake inhibitors. Annals of Pharmacotherapy, 46(12), 1712–1716. doi:10.1345/aph.1Q748.

    Article  PubMed  Google Scholar 

  • Nothdurfter, C., Baghai, T. C., Schule, C., & Rupprecht, R. (2012). Translocator protein (18 kDa) (TSPO) as a therapeutic target for anxiety and neurologic disorders. European Archives of Psychiatry and Clinical Neuroscience, 262(Suppl 2), S107–S112. doi:10.1007/s00406-012-0352-5.

    Article  PubMed  Google Scholar 

  • Papadopoulos, V., Lecanu, L., Brown, R. C., Han, Z., & Yao, Z. X. (2006). Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience, 138(3), 749–756. doi:10.1016/j.neuroscience.2005.05.063.

    Article  CAS  PubMed  Google Scholar 

  • Rocca, P., Beoni, A. M., Eva, C., Ferrero, P., Zanalda, E., & Ravizza, L. (1998). Peripheral benzodiazepine receptor messenger RNA is decreased in lymphocytes of generalized anxiety disorder patients. Biological Psychiatry, 43(10), 767–773.

    Article  CAS  PubMed  Google Scholar 

  • Rupprecht, R., Rammes, G., Eser, D., Baghai, T. C., Schule, C., Nothdurfter, C., et al. (2009). Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science, 325(5939), 490–493. doi:10.1126/science.1175055.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, M. V., Trumbach, D., Weber, P., Wagner, K., Scharf, S. H., Liebl, C., et al. (2010). Individual stress vulnerability is predicted by short-term memory and AMPA receptor subunit ratio in the hippocampus. Journal of Neuroscience, 30(50), 16949–16958. doi:10.1523/JNEUROSCI.4668-10.2010.

    Article  CAS  PubMed  Google Scholar 

  • Suenaga, T., Morinobu, S., Kawano, K., Sawada, T., & Yamawaki, S. (2004). Influence of immobilization stress on the levels of CaMKII and phospho-CaMKII in the rat hippocampus. International Journal of Neuropsychopharmacology, 7(3), 299–309. doi:10.1017/S1461145704004304.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, G. M., Oquendo, M. A., Milak, M., Miller, J. M., Burke, A., Ogden, R. T., et al. (2015). Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder. JAMA Psychiatry, 72(2), 169–178. doi:10.1001/jamapsychiatry.2014.2406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, Z., Wang, Y., Zhang, N., Guo, Y. Y., Feng, B., Liu, S. B., et al. (2013). Estrogen receptor GPR30 exerts anxiolytic effects by maintaining the balance between GABAergic and glutamatergic transmission in the basolateral amygdala of ovariectomized mice after stress. Psychoneuroendocrinology, 38(10), 2218–2233. doi:10.1016/j.psyneuen.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

  • Tomaz, V. S., Cordeiro, R. C., Costa, A. M., de Lucena, D. F., Nobre Junior, H. V., de Sousa, F. C., et al. (2014). Antidepressant-like effect of nitric oxide synthase inhibitors and sildenafil against lipopolysaccharide-induced depressive-like behavior in mice. Neuroscience, 268, 236–246. doi:10.1016/j.neuroscience.2014.03.025.

    Article  CAS  PubMed  Google Scholar 

  • Vasquez, C. E., Riener, R., Reynolds, E., & Britton, G. B. (2014). NMDA receptor dysregulation in chronic state: A possible mechanism underlying depression with BDNF downregulation. Neurochemistry International, 79, 88–97. doi:10.1016/j.neuint.2014.09.007.

    Article  CAS  PubMed  Google Scholar 

  • Veenman, L., & Gavish, M. (2006). The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacology & Therapeutics, 110(3), 503–524. doi:10.1016/j.pharmthera.2005.09.007.

    Article  CAS  Google Scholar 

  • Wang, D. S., Tian, Z., Guo, Y. Y., Guo, H. L., Kang, W. B., Li, S., et al. (2015). Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Molecular Pain, 11, 16. doi:10.1186/s12990-015-0013-6.

    PubMed  PubMed Central  Google Scholar 

  • Weizman, R., & Gavish, M. (1993). Molecular cellular and behavioral aspects of peripheral-type benzodiazepine receptors. Clinical Neuropharmacology, 16(5), 401–417.

    Article  CAS  PubMed  Google Scholar 

  • Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl), 93(3), 358–364.

    Article  CAS  Google Scholar 

  • Zhu, S., Wang, J., Zhang, Y., Li, V., Kong, J., He, J., et al. (2014). Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Research, 1576, 81–90. doi:10.1016/j.brainres.2014.06.002.

    Article  CAS  PubMed  Google Scholar 

  • Zorumski, C. F., Paul, S. M., Izumi, Y., Covey, D. F., & Mennerick, S. (2013). Neurosteroids, stress and depression: Potential therapeutic opportunities. Neuroscience and Biobehavioral Reviews, 37(1), 109–122. doi:10.1016/j.neubiorev.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China Nos. 81325022, 31470052, 2011ZXJ09106-01C, and Clinical Science and Technology Project Funding in Jiangsu Province (No. BL2012002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu, Shui-bing Liu or Ming-gao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dong-sheng Wang, Jing Han and Shuo Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ds., Han, J., Li, S. et al. Antidepressant-Like and Anxiolytic-Like Effects of ZBD-2, a Novel Ligand for the Translocator Protein (18 kDa). Neuromol Med 19, 57–68 (2017). https://doi.org/10.1007/s12017-016-8425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8425-7

Keywords

Navigation