Skip to main content

Advertisement

Log in

Epigenetic Regulation of Memory by Acetylation and Methylation of Chromatin: Implications in Neurological Disorders, Aging, and Addiction

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Synaptic plasticity is one of the most fundamental properties of neurons that underlie the formation of the memory in brain. In recent years, epigenetic modification of both DNA and histones such as DNA methylation and histone acetylation and methylation emerges as a potential regulatory mechanism that governs the transcription of several genes responsible for memory formation and behavior. Furthermore, the recent identification of nitrosylation of proteins has shown to either activate or repress gene transcription by modulating histone methylation or acetylation status in mature neuron. Recent studies suggest that the use of major substrates of abuse, e.g., cocaine, induces alterations in molecular and cellular mechanisms of epigenetics that underlie long-term memories in the striatum and prefrontal cortex. Moreover, downregulation of genes due to alterations in epigenetics leads to cognitive deficiencies associated with neurological disorders such as Alzheimer’s disease, Huntington’s disease, psychiatric disorder such as Rett’s syndrome and aging. In this review, I will discuss the evidence for several epigenetic mechanisms in the coordination of complex memory formation and storage. In addition, I will address the current literature highlighting the role of acetylation and methylation of chromatin in memory impairment associated with several neurological disorders, aging, and addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abel, T., & Lattal, K. M. (2001). Molecular mechanisms of memory acquisition, consolidation and retrieval. Current Opinion in Neurobiology, 11(2), 180–187.

    CAS  PubMed  Google Scholar 

  • Afsari, K., Frank, J., Vaksman, Y., & Nguyen, T. V. (2003). Intracranial venous sinus thrombosis complicating AIDS-associated nephropathy. The AIDS Reader, 13(3), 143–148.

    PubMed  Google Scholar 

  • Aguilar-Valles, A., Vaissiere, T., Griggs, E. M., Mikaelsson, M. A., Takacs, I. F., Young, E. J., et al. (2013). Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Biological Psychiatry,. doi:10.1016/j.biopsych.2013.09.014.

    PubMed  Google Scholar 

  • Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., et al. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP±mice: A model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron, 42(6), 947–959. doi:10.1016/j.neuron.2004.05.021.

    CAS  PubMed  Google Scholar 

  • Alberini, C. M. (2009). Transcription factors in long-term memory and synaptic plasticity. Physiological Reviews, 89(1), 121–145. doi:10.1152/physrev.00017.2008.

    CAS  PubMed  Google Scholar 

  • Archibald, K., Perry, M. J., Molnar, E., & Henley, J. M. (1998). Surface expression and metabolic half-life of AMPA receptors in cultured rat cerebellar granule cells. Neuropharmacology, 37(10–11), 1345–1353.

    CAS  PubMed  Google Scholar 

  • Bahari-Javan, S., Maddalena, A., Kerimoglu, C., Wittnam, J., Held, T., Bahr, M., et al. (2012). HDAC1 regulates fear extinction in mice. Journal of Neuroscience, 32(15), 5062–5073. doi:10.1523/JNEUROSCI.0079-12.2012.

    CAS  PubMed  Google Scholar 

  • Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143), 407–412. doi:10.1038/nature05915.

    CAS  PubMed  Google Scholar 

  • Bertran-Gonzalez, J., Bosch, C., Maroteaux, M., Matamales, M., Herve, D., Valjent, E., et al. (2008). Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. Journal of Neuroscience, 28(22), 5671–5685. doi:10.1523/JNEUROSCI.1039-08.2008.

    CAS  PubMed  Google Scholar 

  • Borrelli, E., Nestler, E. J., Allis, C. D., & Sassone-Corsi, P. (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6), 961–974. doi:10.1016/j.neuron.2008.10.012.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bredt, D. S., & Snyder, S. H. (1994). Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron, 13(2), 301–313.

    CAS  PubMed  Google Scholar 

  • Bredy, T. W., Wu, H., Crego, C., Zellhoefer, J., Sun, Y. E., & Barad, M. (2007). Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learning & Memory, 14(4), 268–276. doi:10.1101/lm.500907.

    CAS  Google Scholar 

  • Broide, R. S., Redwine, J. M., Aftahi, N., Young, W., Bloom, F. E., & Winrow, C. J. (2007). Distribution of histone deacetylases 1-11 in the rat brain. Journal of Molecular Neuroscience, 31(1), 47–58.

    CAS  PubMed  Google Scholar 

  • Carlezon, W. A, Jr, Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends in Neurosciences, 28(8), 436–445. doi:10.1016/j.tins.2005.06.005.

    CAS  PubMed  Google Scholar 

  • Cassel, S., Carouge, D., Gensburger, C., Anglard, P., Burgun, C., Dietrich, J. B., et al. (2006). Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Molecular Pharmacology, 70(2), 487–492. doi:10.1124/mol.106.022301.

    CAS  PubMed  Google Scholar 

  • Chahrour, M., Jung, S. Y., Shaw, C., Zhou, X., Wong, S. T., Qin, J., et al. (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880), 1224–1229. doi:10.1126/science.1153252.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, T. F., Huang, R. F., Lin, S. E., Lu, J. F., Tang, M. C., & Chiu, M. J. (2010a). Folic Acid potentiates the effect of memantine on spatial learning and neuronal protection in an Alzheimer’s disease transgenic model. Journal of Alzheimer’s Disease, 20(2), 607–615. doi:10.3233/JAD-2010-1396.

    CAS  PubMed  Google Scholar 

  • Chen, G., Zou, X., Watanabe, H., van Deursen, J. M., & Shen, J. (2010b). CREB binding protein is required for both short-term and long-term memory formation. Journal of Neuroscience, 30(39), 13066–13077. doi:10.1523/JNEUROSCI.2378-10.2010.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Colby, C. R., Whisler, K., Steffen, C., Nestler, E. J., & Self, D. W. (2003). Striatal cell type-specific overexpression of DeltaFosB enhances incentive for cocaine. Journal of Neuroscience, 23(6), 2488–2493.

    CAS  PubMed  Google Scholar 

  • Colussi, C., Mozzetta, C., Gurtner, A., Illi, B., Rosati, J., Straino, S., et al. (2008). HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proceedings of the National Academy of Sciences, 105(49), 19183–19187. doi:10.1073/pnas.0805514105.

    CAS  Google Scholar 

  • Copray, S., Huynh, J. L., Sher, F., Casaccia-Bonnefil, P., & Boddeke, E. (2009). Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia, 57(15), 1579–1587. doi:10.1002/glia.20881.

    PubMed Central  PubMed  Google Scholar 

  • Deng, J. V., Rodriguiz, R. M., Hutchinson, A. N., Kim, I. H., Wetsel, W. C., & West, A. E. (2010). MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nature Neuroscience, 13(9), 1128–1136. doi:10.1038/nn.2614.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dhalluin, C., Carlson, J. E., Zeng, L., He, C., Aggarwal, A. K., & Zhou, M. M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature, 399(6735), 491–496. doi:10.1038/20974.

    CAS  PubMed  Google Scholar 

  • Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 13(4), 423–430. doi:10.1038/nn.2514.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer, A., Sananbenesi, F., Mungenast, A., & Tsai, L. H. (2010). Targeting the correct HDAC(s) to treat cognitive disorders. Trends in Pharmacological Sciences, 31(12), 605–617. doi:10.1016/j.tips.2010.09.003.

    CAS  PubMed  Google Scholar 

  • Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., & Tsai, L. H. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature, 447(7141), 178–182. doi:10.1038/nature05772.

    CAS  PubMed  Google Scholar 

  • Fontan-Lozano, A., Romero-Granados, R., Troncoso, J., Munera, A., Delgado-Garcia, J. M., & Carrion, A. M. (2008). Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. Molecular and Cellular Neuroscience, 39(2), 193–201. doi:10.1016/j.mcn.2008.06.009.

    CAS  PubMed  Google Scholar 

  • Fontan-Lozano, A., Suarez-Pereira, I., Horrillo, A., del-Pozo-Martin, Y., Hmadcha, A., & Carrion, A. M. (2010). Histone H1 poly[ADP]-ribosylation regulates the chromatin alterations required for learning consolidation. Journal of Neuroscience, 30(40), 13305–13313. doi:10.1523/JNEUROSCI.3010-10.2010.

    CAS  PubMed  Google Scholar 

  • Francis, Y. I., Fa, M., Ashraf, H., Zhang, H., Staniszewski, A., Latchman, D. S., et al. (2009). Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease, 18(1), 131–139. doi:10.3233/JAD-2009-1134.

    CAS  PubMed  Google Scholar 

  • Fuso, A., Seminara, L., Cavallaro, R. A., D’Anselmi, F., & Scarpa, S. (2005). S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Molecular and Cellular Neuroscience, 28(1), 195–204. doi:10.1016/j.mcn.2004.09.007.

    CAS  PubMed  Google Scholar 

  • Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A landscape takes shape. Cell, 128(4), 635–638. doi:10.1016/j.cell.2007.02.006.

    CAS  PubMed  Google Scholar 

  • Govindarajan, N., Agis-Balboa, R. C., Walter, J., Sananbenesi, F., & Fischer, A. (2011). Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. Journal of Alzheimer’s Disease, 26(1), 187–197. doi:10.3233/JAD-2011-110080.

    CAS  PubMed  Google Scholar 

  • Graff, J., Kim, D., Dobbin, M. M., & Tsai, L. H. (2011). Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiological Reviews, 91(2), 603–649. doi:10.1152/physrev.00012.2010.

    CAS  PubMed  Google Scholar 

  • Graff, J., & Mansuy, I. M. (2009). Epigenetic dysregulation in cognitive disorders. European Journal of Neuroscience, 30(1), 1–8. doi:10.1111/j.1460-9568.2009.06787.x.

    PubMed  Google Scholar 

  • Graff, J., Rei, D., Guan, J. S., Wang, W. Y., Seo, J., Hennig, K. M., et al. (2012). An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 483(7388), 222–226. doi:10.1038/nature10849.

    PubMed Central  PubMed  Google Scholar 

  • Graham, D. L., Edwards, S., Bachtell, R. K., DiLeone, R. J., Rios, M., & Self, D. W. (2007). Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nature Neuroscience, 10(8), 1029–1037. doi:10.1038/nn1929.

    CAS  PubMed  Google Scholar 

  • Greer, E. L., & Shi, Y. (2012). Histone methylation: A dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 13(5), 343–357. doi:10.1038/nrg3173.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gregoretti, I. V., Lee, Y. M., & Goodson, H. V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology, 338(1), 17–31. doi:10.1016/j.jmb.2004.02.006.

    CAS  PubMed  Google Scholar 

  • Guan, Z., Giustetto, M., Lomvardas, S., Kim, J. H., Miniaci, M. C., Schwartz, J. H., et al. (2002). Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell, 111(4), 483–493.

    CAS  PubMed  Google Scholar 

  • Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J., et al. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459(7243), 55–60. doi:10.1038/nature07925.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta, S., Kim, S. Y., Artis, S., Molfese, D. L., Schumacher, A., Sweatt, J. D., et al. (2010). Histone methylation regulates memory formation. Journal of Neuroscience, 30(10), 3589–3599. doi:10.1523/JNEUROSCI.3732-09.2010.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta-Agarwal, S., Franklin, A. V., Deramus, T., Wheelock, M., Davis, R. L., McMahon, L. L., et al. (2012). G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. Journal of Neuroscience, 32(16), 5440–5453. doi:10.1523/JNEUROSCI.0147-12.2012.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10(1), 32–42. doi:10.1038/nrg2485.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haggarty, S. J., & Tsai, L. H. (2011). Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiology of Learning and Memory, 96(1), 41–52. doi:10.1016/j.nlm.2011.04.009.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., et al. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nature Cell Biology, 7(7), 665–674. doi:10.1038/ncb1268.

    CAS  PubMed  Google Scholar 

  • Hargreaves, D. C., Horng, T., & Medzhitov, R. (2009). Control of inducible gene expression by signal-dependent transcriptional elongation. Cell, 138(1), 129–145. doi:10.1016/j.cell.2009.05.047.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E., & Stamler, J. S. (2005). Protein S-nitrosylation: Purview and parameters. Nature Reviews Molecular Cell Biology, 6(2), 150–166. doi:10.1038/nrm1569.

    CAS  PubMed  Google Scholar 

  • Holtzman, D. M., Goate, A., Kelly, J., & Sperling, R. (2011). Mapping the road forward in Alzheimer’s disease. Science Translational Medicine, 3(114), 114ps148. doi:10.1126/scitranslmed.3003529.

    Google Scholar 

  • Host, L., Dietrich, J. B., Carouge, D., Aunis, D., & Zwiller, J. (2011). Cocaine self-administration alters the expression of chromatin-remodelling proteins; modulation by histone deacetylase inhibition. Journal of Psychopharmacology, 25(2), 222–229. doi:10.1177/0269881109348173.

    CAS  PubMed  Google Scholar 

  • Huang, Y., & Mucke, L. (2012). Alzheimer mechanisms and therapeutic strategies. Cell, 148(6), 1204–1222. doi:10.1016/j.cell.2012.02.040.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Im, H. I., Hollander, J. A., Bali, P., & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120–1127. doi:10.1038/nn.2615.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl), 245–254. doi:10.1038/ng1089.

    CAS  PubMed  Google Scholar 

  • Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080. doi:10.1126/science.1063127.

    CAS  PubMed  Google Scholar 

  • Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 19(2), 187–191. doi:10.1038/561.

    CAS  PubMed  Google Scholar 

  • Kalkhoven, E. (2004). CBP and p300: HATs for different occasions. Biochemical Pharmacology, 68(6), 1145–1155. doi:10.1016/j.bcp.2004.03.045.

    CAS  PubMed  Google Scholar 

  • Kazantsev, A. G., & Thompson, L. M. (2008). Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews Drug Discovery, 7(10), 854–868. doi:10.1038/nrd2681.

    CAS  PubMed  Google Scholar 

  • Kelz, M. B., Chen, J., Carlezon, W. A, Jr, Whisler, K., Gilden, L., Beckmann, A. M., et al. (1999). Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature, 401(6750), 272–276. doi:10.1038/45790.

    CAS  PubMed  Google Scholar 

  • Kim, W. Y., Kim, S., & Kim, J. H. (2008). Chronic microinjection of valproic acid into the nucleus accumbens attenuates amphetamine-induced locomotor activity. Neuroscience Letters, 432(1), 54–57. doi:10.1016/j.neulet.2007.12.005.

    CAS  PubMed  Google Scholar 

  • Kornhauser, J. M., Cowan, C. W., Shaywitz, A. J., Dolmetsch, R. E., Griffith, E. C., Hu, L. S., et al. (2002). CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron, 34(2), 221–233.

    CAS  PubMed  Google Scholar 

  • Korzus, E., Rosenfeld, M. G., & Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 42(6), 961–972. doi:10.1016/j.neuron.2004.06.002.

    CAS  PubMed  Google Scholar 

  • Koshibu, K., Graff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., et al. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. Journal of Neuroscience, 29(41), 13079–13089. doi:10.1523/JNEUROSCI.3610-09.2009.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Choi, K. H., Renthal, W., Tsankova, N. M., Theobald, D. E., Truong, H. T., et al. (2005). Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron, 48(2), 303–314. doi:10.1016/j.neuron.2005.09.023.

    CAS  PubMed  Google Scholar 

  • Lamprecht, R., Hazvi, S., & Dudai, Y. (1997). cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. Journal of Neuroscience, 17(21), 8443–8450.

    CAS  PubMed  Google Scholar 

  • LaPlant, Q., Vialou, V., Covington, H. E, 3rd, Dumitriu, D., Feng, J., Warren, B. L., et al. (2010). Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience, 13(9), 1137–1143. doi:10.1038/nn.2619.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lattal, K. M., Barrett, R. M., & Wood, M. A. (2007). Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behavioral Neuroscience, 121(5), 1125–1131. doi:10.1037/0735-7044.121.5.1125.

    CAS  PubMed  Google Scholar 

  • Lee, Y. S., & Silva, A. J. (2009). The molecular and cellular biology of enhanced cognition. Nature Reviews Neuroscience, 10(2), 126–140. doi:10.1038/nrn2572.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee, K. K., & Workman, J. L. (2007). Histone acetyltransferase complexes: One size doesn’t fit all. Nature Reviews Molecular Cell Biology, 8(4), 284–295. doi:10.1038/nrm2145.

    CAS  PubMed  Google Scholar 

  • Lesburgueres, E., Gobbo, O. L., Alaux-Cantin, S., Hambucken, A., Trifilieff, P., & Bontempi, B. (2011). Early tagging of cortical networks is required for the formation of enduring associative memory. Science, 331(6019), 924–928. doi:10.1126/science.1196164.

    CAS  PubMed  Google Scholar 

  • Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279(39), 40545–40559. doi:10.1074/jbc.M402229200.

    CAS  PubMed  Google Scholar 

  • Levine, A. A., Guan, Z., Barco, A., Xu, S., Kandel, E. R., & Schwartz, J. H. (2005). CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 19186–19191. doi:10.1073/pnas.0509735102.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, X., Wang, L., Zhao, K., Thompson, P. R., Hwang, Y., Marmorstein, R., et al. (2008). The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 451(7180), 846–850. doi:10.1038/nature06546.

    CAS  PubMed  Google Scholar 

  • Lopez-Atalaya, J. P., Gervasini, C., Mottadelli, F., Spena, S., Piccione, M., Scarano, G., et al. (2012). Histone acetylation deficits in lymphoblastoid cell lines from patients with Rubinstein–Taybi syndrome. Journal of Medical Genetics, 49(1), 66–74. doi:10.1136/jmedgenet-2011-100354.

    CAS  PubMed  Google Scholar 

  • Lu, T., Pan, Y., Kao, S. Y., Li, C., Kohane, I., Chan, J., et al. (2004). Gene regulation and DNA damage in the ageing human brain. Nature, 429(6994), 883–891. doi:10.1038/nature02661.

    CAS  PubMed  Google Scholar 

  • Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28(42), 10576–10586. doi:10.1523/JNEUROSCI.1786-08.2008.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lubin, F. D., & Sweatt, J. D. (2007). The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron, 55(6), 942–957. doi:10.1016/j.neuron.2007.07.039.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma, D. K., Jang, M. H., Guo, J. U., Kitabatake, Y., Chang, M. L., Pow-Anpongkul, N., et al. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917), 1074–1077. doi:10.1126/science.1166859.

    PubMed Central  CAS  PubMed  Google Scholar 

  • MacDonald, J. L., & Roskams, A. J. (2008). Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Developmental Dynamics, 237(8), 2256–2267. doi:10.1002/dvdy.21626.

    PubMed  Google Scholar 

  • Maddox, S. A., & Schafe, G. E. (2011). Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learning & Memory, 18(9), 579–593. doi:10.1101/lm.2243411.

    CAS  Google Scholar 

  • Maze, I., Covington, H. E, 3rd, Dietz, D. M., LaPlant, Q., Renthal, W., Russo, S. J., et al. (2010). Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science, 327(5962), 213–216. doi:10.1126/science.1179438.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maze, I., & Nestler, E. J. (2011). The epigenetic landscape of addiction. Annals of the New York Academy of Sciences, 1216, 99–113. doi:10.1111/j.1749-6632.2010.05893.x.

    PubMed Central  CAS  PubMed  Google Scholar 

  • McQuown, S. C., Barrett, R. M., Matheos, D. P., Post, R. J., Rogge, G. A., Alenghat, T., et al. (2011). HDAC3 is a critical negative regulator of long-term memory formation. Journal of Neuroscience, 31(2), 764–774. doi:10.1523/JNEUROSCI.5052-10.2011.

    PubMed Central  CAS  PubMed  Google Scholar 

  • McQuown, S. C., & Wood, M. A. (2010). Epigenetic regulation in substance use disorders. Current Psychiatry Reports, 12(2), 145–153. doi:10.1007/s11920-010-0099-5.

    PubMed Central  PubMed  Google Scholar 

  • Michan, S., & Sinclair, D. (2007). Sirtuins in mammals: Insights into their biological function. Biochemical Journal, 404(1), 1–13. doi:10.1042/BJ20070140.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., et al. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13(6), 664–666. doi:10.1038/nn.2560.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6), 857–869. doi:10.1016/j.neuron.2007.02.022.

    CAS  PubMed  Google Scholar 

  • Monsey, M. S., Ota, K. T., Akingbade, I. F., Hong, E. S., & Schafe, G. E. (2011). Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS ONE, 6(5), e19958. doi:10.1371/journal.pone.0019958.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moretti, P., Levenson, J. M., Battaglia, F., Atkinson, R., Teague, R., Antalffy, B., et al. (2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. Journal of Neuroscience, 26(1), 319–327. doi:10.1523/JNEUROSCI.2623-05.2006.

    CAS  PubMed  Google Scholar 

  • Morris, M. J., Karra, A. S., & Monteggia, L. M. (2010). Histone deacetylases govern cellular mechanisms underlying behavioral and synaptic plasticity in the developing and adult brain. Behavioural Pharmacology, 21(5–6), 409–419. doi:10.1097/FBP.0b013e32833c20c0.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nott, A., Watson, P. M., Robinson, J. D., Crepaldi, L., & Riccio, A. (2008). S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature, 455(7211), 411–415. doi:10.1038/nature07238.

    CAS  PubMed  Google Scholar 

  • Oliveira, A. M., Wood, M. A., McDonough, C. B., & Abel, T. (2007). Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learning & Memory, 14(9), 564–572. doi:10.1101/lm.656907.

    CAS  Google Scholar 

  • Peleg, S., Sananbenesi, F., Zovoilis, A., Burkhardt, S., Bahari-Javan, S., Agis-Balboa, R. C., et al. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 328(5979), 753–756. doi:10.1126/science.1186088.

    CAS  PubMed  Google Scholar 

  • Peters, A. H., & Schubeler, D. (2005). Methylation of histones: Playing memory with DNA. Current Opinion in Cell Biology, 17(2), 230–238. doi:10.1016/j.ceb.2005.02.006.

    CAS  PubMed  Google Scholar 

  • Petrij, F., Giles, R. H., Dauwerse, H. G., Saris, J. J., Hennekam, R. C., Masuno, M., et al. (1995). Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 376(6538), 348–351. doi:10.1038/376348a0.

    CAS  PubMed  Google Scholar 

  • Portela, A., & Esteller, M. (2010). Epigenetic modifications and human disease. Nature Biotechnology, 28(10), 1057–1068. doi:10.1038/nbt.1685.

    CAS  PubMed  Google Scholar 

  • Putignano, E., Lonetti, G., Cancedda, L., Ratto, G., Costa, M., Maffei, L., et al. (2007). Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron, 53(5), 747–759. doi:10.1016/j.neuron.2007.02.007.

    CAS  PubMed  Google Scholar 

  • Ramos, Y. F., Hestand, M. S., Verlaan, M., Krabbendam, E., Ariyurek, Y., van Galen, M., et al. (2010). Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Research, 38(16), 5396–5408. doi:10.1093/nar/gkq184.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renthal, W., Kumar, A., Xiao, G., Wilkinson, M., Covington, H. E, 3rd, Maze, I., et al. (2009). Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron, 62(3), 335–348. doi:10.1016/j.neuron.2009.03.026.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renthal, W., Maze, I., Krishnan, V., Covington, H. E, 3rd, Xiao, G., Kumar, A., et al. (2007). Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron, 56(3), 517–529. doi:10.1016/j.neuron.2007.09.032.

    CAS  PubMed  Google Scholar 

  • Renthal, W., & Nestler, E. J. (2008). Epigenetic mechanisms in drug addiction. Trends in Molecular Medicine, 14(8), 341–350. doi:10.1016/j.molmed.2008.06.004.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riccio, A. (2010). Dynamic epigenetic regulation in neurons: Enzymes, stimuli and signaling pathways. Nature Neuroscience, 13(11), 1330–1337. doi:10.1038/nn.2671.

    CAS  PubMed  Google Scholar 

  • Rice, J. C., Briggs, S. D., Ueberheide, B., Barber, C. M., Shabanowitz, J., Hunt, D. F., et al. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Molecular Cell, 12(6), 1591–1598.

    CAS  PubMed  Google Scholar 

  • Ricobaraza, A., Cuadrado-Tejedor, M., Perez-Mediavilla, A., Frechilla, D., Del Rio, J., & Garcia-Osta, A. (2009). Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology, 34(7), 1721–1732. doi:10.1038/npp.2008.229.

    CAS  PubMed  Google Scholar 

  • Roelfsema, J. H., & Peters, D. J. (2007). Rubinstein–Taybi syndrome: Clinical and molecular overview. Expert Reviews in Molecular Medicine, 9(23), 1–16. doi:10.1017/S1462399407000415.

    PubMed  Google Scholar 

  • Roelfsema, J. H., White, S. J., Ariyurek, Y., Bartholdi, D., Niedrist, D., Papadia, F., et al. (2005). Genetic heterogeneity in Rubinstein–Taybi syndrome: Mutations in both the CBP and EP300 genes cause disease. American Journal of Human Genetics, 76(4), 572–580. doi:10.1086/429130.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Romieu, P., Host, L., Gobaille, S., Sandner, G., Aunis, D., & Zwiller, J. (2008). Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. Journal of Neuroscience, 28(38), 9342–9348. doi:10.1523/JNEUROSCI.0379-08.2008.

    CAS  PubMed  Google Scholar 

  • Roth, S. Y., Denu, J. M., & Allis, C. D. (2001). Histone acetyltransferases. Annual Review of Biochemistry, 70, 81–120. doi:10.1146/annurev.biochem.70.1.81.

    CAS  PubMed  Google Scholar 

  • Saura, C. A., Choi, S. Y., Beglopoulos, V., Malkani, S., Zhang, D., Shankaranarayana Rao, B. S., et al. (2004). Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron, 42(1), 23–36.

    CAS  PubMed  Google Scholar 

  • Schroeder, F. A., Penta, K. L., Matevossian, A., Jones, S. R., Konradi, C., Tapper, A. R., et al. (2008). Drug-induced activation of dopamine D(1) receptor signaling and inhibition of class I/II histone deacetylase induce chromatin remodeling in reward circuitry and modulate cocaine-related behaviors. Neuropsychopharmacology, 33(12), 2981–2992. doi:10.1038/npp.2008.15.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sen, N., Hara, M. R., Kornberg, M. D., Cascio, M. B., Bae, B. I., Shahani, N., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nature Cell Biology, 10(7), 866–873. doi:10.1038/ncb1747.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sen, N., & Snyder, S. H. (2011). Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20178–20183. doi:10.1073/pnas.1117820108.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shahani, N., & Sawa, A. (2011). Nitric oxide signaling and nitrosative stress in neurons: Role for S-nitrosylation. Antioxidants & Redox Signaling, 14(8), 1493–1504. doi:10.1089/ars.2010.3580.

    CAS  Google Scholar 

  • Shaywitz, A. J., & Greenberg, M. E. (1999). CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annual Review of Biochemistry, 68, 821–861. doi:10.1146/annurev.biochem.68.1.821.

    CAS  PubMed  Google Scholar 

  • Sterner, D. E., & Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Microbiology and Molecular Biology Reviews, 64(2), 435–459.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stevens, C. F. (1994). CREB and memory consolidation. Neuron, 13(4), 769–770.

    CAS  PubMed  Google Scholar 

  • Sultan, F. A., & Day, J. J. (2011). Epigenetic mechanisms in memory and synaptic function. Epigenomics, 3(2), 157–181. doi:10.2217/epi.11.6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki, M. M., & Bird, A. (2008). DNA methylation landscapes: Provocative insights from epigenomics. Nature Reviews Genetics, 9(6), 465–476. doi:10.1038/nrg2341.

    CAS  PubMed  Google Scholar 

  • Tang, B., Chang, W. L., Lanigan, C. M., Dean, B., Sutcliffe, J. G., & Thomas, E. A. (2009). Normal human aging and early-stage schizophrenia share common molecular profiles. Aging Cell, 8(3), 339–342. doi:10.1111/j.1474-9726.2009.00468.x.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tricoire, L., & Vitalis, T. (2012). Neuronal nitric oxide synthase expressing neurons: A journey from birth to neuronal circuits. Front Neural Circuits, 6, 82. doi:10.3389/fncir.2012.00082.

    PubMed Central  PubMed  Google Scholar 

  • Trievel, R. C. (2004). Structure and function of histone methyltransferases. Critical Reviews in Eukaryotic Gene Expression, 14(3), 147–169.

    CAS  PubMed  Google Scholar 

  • Vashishtha, M., Ng, C. W., Yildirim, F., Gipson, T. A., Kratter, I. H., Bodai, L., et al. (2013). Targeting H3K4 trimethylation in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 110(32), E3027–3036. doi:10.1073/pnas.1311323110.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., et al. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. Journal of Neuroscience, 27(23), 6128–6140. doi:10.1523/JNEUROSCI.0296-07.2007.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walsh, D. M., & Selkoe, D. J. (2004). Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron, 44(1), 181–193. doi:10.1016/j.neuron.2004.09.010.

    CAS  PubMed  Google Scholar 

  • Walton, M. R., & Dragunow, I. (2000). Is CREB a key to neuronal survival? Trends in Neurosciences, 23(2), 48–53.

    CAS  PubMed  Google Scholar 

  • Wang, W. H., Cheng, L. C., Pan, F. Y., Xue, B., Wang, D. Y., Chen, Z., et al. (2011). Intracellular trafficking of histone deacetylase 4 regulates long-term memory formation. The Anatomical Record (Hoboken), 294(6), 1025–1034. doi:10.1002/ar.21389.

    CAS  Google Scholar 

  • Wang, C. M., Tsai, S. N., Yew, T. W., Kwan, Y. W., & Ngai, S. M. (2010). Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology, 11(1), 87–102. doi:10.1007/s10522-009-9231-5.

    CAS  PubMed  Google Scholar 

  • Wood, M. A., Kaplan, M. P., Park, A., Blanchard, E. J., Oliveira, A. M., Lombardi, T. L., et al. (2005). Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learning & Memory, 12(2), 111–119. doi:10.1101/lm.86605.

    Google Scholar 

  • Wu, S. C., & Zhang, Y. (2010). Active DNA demethylation: Many roads lead to Rome. Nature Reviews Molecular Cell Biology, 11(9), 607–620. doi:10.1038/nrm2950.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, R., Serritella, A. V., Sen, T., Farook, J. M., Sedlak, T. W., Baraban, J., et al. (2013). Behavioral effects of cocaine mediated by nitric oxide-GAPDH transcriptional signaling. Neuron, 78(4), 623–630. doi:10.1016/j.neuron.2013.03.021.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, X. J. (2004). Lysine acetylation and the bromodomain: A new partnership for signaling. BioEssays, 26(10), 1076–1087. doi:10.1002/bies.20104.

    CAS  PubMed  Google Scholar 

  • Yang, X. J., & Seto, E. (2008). The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nature Reviews Molecular Cell Biology, 9(3), 206–218. doi:10.1038/nrm2346.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yankner, B. A., Lu, T., & Loerch, P. (2008). The aging brain. Annual Review of Pathology: Mechanisms of Disease, 3, 41–66. doi:10.1146/annurev.pathmechdis.2.010506.092044.

    CAS  Google Scholar 

  • Yeh, S. H., Lin, C. H., & Gean, P. W. (2004). Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Molecular Pharmacology, 65(5), 1286–1292. doi:10.1124/mol.65.5.1286.

    CAS  PubMed  Google Scholar 

  • Zachariou, V., Bolanos, C. A., Selley, D. E., Theobald, D., Cassidy, M. P., Kelz, M. B., et al. (2006). An essential role for DeltaFosB in the nucleus accumbens in morphine action. Nature Neuroscience, 9(2), 205–211. doi:10.1038/nn1636.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes & Development, 15(18), 2343–2360. doi:10.1101/gad.927301.

    CAS  Google Scholar 

  • Zhou, L., & Zhu, D. Y. (2009). Neuronal nitric oxide synthase: Structure, subcellular localization, regulation, and clinical implications. Nitric Oxide, 20(4), 223–230. doi:10.1016/j.niox.2009.03.001.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our apologies to colleagues whose work could not be included in this review. N.S is supported by a generous startup funding provided by Georgia Regents University.

Conflict of interest

I would like to declare that I do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilkantha Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, N. Epigenetic Regulation of Memory by Acetylation and Methylation of Chromatin: Implications in Neurological Disorders, Aging, and Addiction. Neuromol Med 17, 97–110 (2015). https://doi.org/10.1007/s12017-014-8306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8306-x

Keywords

Navigation