Skip to main content
Log in

A Review of Post-treatment Lyme Disease Syndrome and Chronic Lyme Disease for the Practicing Immunologist

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Lyme disease is an infection caused by Borrelia burgdorferi sensu lato, which is transmitted to humans through the bite of an infected Ixodes tick. The majority of patients recover without complications with antibiotic therapy. However, for a minority of patients, accompanying non-specific symptoms can persist for months following completion of therapy. The constellation of symptoms such as fatigue, cognitive dysfunction, and musculoskeletal pain that persist beyond 6 months and are associated with disability have been termed post-treatment Lyme disease syndrome (PTLDS), a subset of a broader term “chronic Lyme disease.” Chronic Lyme disease is a broad, vaguely defined term that is used to describe patients with non-specific symptoms that are attributed to a presumed persistent Borrelia burgdorferi infection in patients who may or may not have evidence of either previous or current Lyme disease. The diagnoses of chronic Lyme disease and of PTLDS have become increasingly relevant to the practice of immunologists due to referrals for consultation or for intravenous immunoglobulin (IVIG) treatment. This review aims to explore the relationship between chronic Lyme disease, post-treatment Lyme disease syndrome, and the immune system. Here, we review the current literature on (1) issues in conventional and alternative diagnostic testing for Lyme disease, (2) the hypothesis that B. burgdorferi infection can persist despite appropriate use of recommended antibiotics, (3) current theories regarding B. burgdorferi’s role in causing both immune dysregulation and protracted symptoms, and (4) the use of IVIG for the treatment of Lyme disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wormser GP, Dattwyler RJ, Shapiro ED et al (2006) The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and Babesiosis: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin Infect Dis 43:1089–1134. https://doi.org/10.1086/508667

    Article  PubMed  Google Scholar 

  2. Shapiro ED, Dattwyler R, Nadelman RB, Wormser GP (2005) Response to meta-analysis of Lyme borreliosis symptoms. Int Epidemiol Assoc Int J Epidemiol 34:1437–1439. https://doi.org/10.1093/ije/dyi241

    Article  Google Scholar 

  3. Shapiro ED (2014) Clinical practice: Lyme disease. N Engl J Med 371. https://doi.org/10.1056/NEJMc1407264

  4. Feder HM, Johnson BJB, O’Connell S et al (2007) A critical appraisal of chronic lyme disease. N Engl J Med 357:1422

    Article  CAS  PubMed  Google Scholar 

  5. Dahlhamer J, Lucas J, Zelaya C et al (2018) Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. MMWR Morb Mortal Wkly Rep 67:1001–1006. https://doi.org/10.15585/mmwr.mm6736a2

  6. Ricci JA, Chee E, Lorandeau AL, Berger J (2007) Fatigue in the U.S. workforce: prevalence and implications for lost productive work time. J Occup Environ Med 49:1–10. https://doi.org/10.1097/01.jom.0000249782.60321.2a

    Article  PubMed  Google Scholar 

  7. Blackwell D, Clarke TC (2013) QuickStats: percentage of adults who often felt very tired or exhausted in the past 3 months,* by sex and age group—national health interview survey, United States, 2010–2011†. MMWR Morb Mortal Wkly Rep 62:275

    PubMed Central  Google Scholar 

  8. Seltzer EG, Shapiro ED (1996) Misdiagnosis of Lyme disease: When not to order serologic tests. Pediatr Infect Dis J 15:762–763

    Article  CAS  PubMed  Google Scholar 

  9. Tugwell P, Dennis DT, Weinstein A et al (1997) Laboratory evaluation in the diagnosis of Lyme disease. Ann Intern Med 127:1109–1123. https://doi.org/10.7326/0003-4819-127-12-199712150-00011

    Article  CAS  PubMed  Google Scholar 

  10. Lipsett SC, Branda JA, Nigrovic LE (2019) Evaluation of the modified two-tiered testing method for diagnosis of Lyme disease in children. J Clin Microbiol 57. https://doi.org/10.1128/JCM.00547-19

  11. Branda JA, Strle K, Nigrovic LE et al (2017) Evaluation of modified 2-tiered serodiagnostic testing algorithms for early Lyme disease. Clin Infect Dis 64:1074–1080. https://doi.org/10.1093/cid/cix043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pegalajar-Jurado A, Schriefer ME, Welch RJ et al (2018) Evaluation of modified two-tiered testing algorithms for lyme disease laboratory diagnosis using well-characterized serum samples. J Clin Microbiol 56. https://doi.org/10.1128/JCM.01943-17

  13. Rebman AW, Crowder LA, Kirkpatrick A, Aucott JN (2014) Characteristics of seroconversion and implications for diagnosis of post-treatment Lyme disease syndrome: acute and convalescent serology among a prospective cohort of early Lyme disease patients. Clin Rheumatol 34:585–589. https://doi.org/10.1007/s10067-014-2706-z

    Article  PubMed  Google Scholar 

  14. Moore A, Nelson C, Molins C et al (2016) Current guidelines, common clinical pitfalls, and future directions for laboratory diagnosis of lyme disease, United States. Emerg Infect Dis 22:1169–1177. https://doi.org/10.3201/eid2207.151694

    Article  CAS  PubMed Central  Google Scholar 

  15. Centers for Disease Control and Prevention (2013) Lyme disease diagnosis and testing. In: Centers Dis. Control Prev. http://www.cdc.gov/lyme/diagnosistesting/index.html. Accessed 15 May 2020

  16. Kalish RA, McHugh G, Granquist J et al (2001) Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin Infect Dis 33:780–785. https://doi.org/10.1086/322669

    Article  CAS  PubMed  Google Scholar 

  17. Qureshi M, New D, Zulqarni N, Nachman S (2002) Overdiagnosis and overtreatment of Lyme disease in children. Pediatr Infect Dis J 21:12–14. https://doi.org/10.1097/00006454-200201000-00003

    Article  PubMed  Google Scholar 

  18. Kobayashi T, Higgins Y, Samuels R et al (2019) Misdiagnosis of Lyme disease with unnecessary antimicrobial treatment characterizes patients referred to an academic infectious diseases. Clinic Open forum Infect Dis 6. https://doi.org/10.1093/OFID/OFZ299

  19. Reid M, Schoen R, Evans J et al (1998) The consequences of overdiagnosis and overtreatment of Lyme disease: an observational study. Ann Intern Med 128:354–362. https://doi.org/10.7326/0003-4819-128-5-199803010-00003

    Article  CAS  PubMed  Google Scholar 

  20. Fallon BA, Pavlicova M, Coffino SW, Brenner C (2014) A comparison of Lyme disease serologic test results from 4 laboratories in patients with persistent symptoms after antibiotic treatment. https://doi.org/10.1093/cid/ciu703

  21. Centers for Disease Control and Prevention (2018) Laboratory tests that are not recommended. In: Centers Dis. Control Prev. https://www.cdc.gov/lyme/diagnosistesting/labtest/otherlab/index.html. Accessed 5 Jul 2020

  22. Schutzer SE, Body BA, Boyle J et al (2019) Direct diagnostic tests for Lyme disease. Clin Infect Dis. https://doi.org/10.1093/cid/ciy614

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steere AC, Strle F, Wormser GP et al (2016) Lyme borreliosis. Nat Rev Dis Prim 2:16090. https://doi.org/10.1038/nrdp.2016.90

    Article  PubMed  Google Scholar 

  24. Jutras BL, Lochhead RB, Kloos ZA et al (2019) Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A 116:13498–13507. https://doi.org/10.1073/pnas.1904170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lantos PM, Lantos PM, Rumbaugh J et al (2020) Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis and Treatment of Lyme Disease. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa1215

  26. Steere AC (2020) Posttreatment Lyme disease syndromes: distinct pathogenesis caused by maladaptive host responses. J Clin Invest 130:2148–2151. https://doi.org/10.1172/JCI138062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaconas G, Castellanos M, Verhey TB (2020) Changing of the guard: how the Lyme disease spirochete subverts the host immune response. J Biol Chem 295:301–313. https://doi.org/10.1074/jbc.REV119.008583

    Article  CAS  PubMed  Google Scholar 

  28. Tracy KE, Baumgarth N (2017) Borrelia burgdorferi manipulates innate and adaptive immunity to establish persistence in rodent reservoir hosts. Front Immunol 8:1–11. https://doi.org/10.3389/fimmu.2017.00116

    Article  CAS  Google Scholar 

  29. Feng J, Li T, Yee R et al (2019) Stationary phase persister/biofilm microcolony of Borrelia burgdorferi causes more severe disease in a mouse model of Lyme arthritis: implications for understanding persistence, post-treatment Lyme disease syndrome (PTLDS), and treatment failure. Discov Med 27:125–138

    PubMed  Google Scholar 

  30. Sharma B, Brown AV, Matluck NE et al (2015) Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob Agents Chemother 59:4616–4624. https://doi.org/10.1128/AAC.00864-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng J, Shi W, Zhang S, Zhang Y (2015) Persister mechanisms in Borrelia burgdorferi: implications for improved intervention. Emerg. Microbes Infect 4:e51

  32. Caskey JR, Embers ME (2015) Persister development by Borrelia burgdorferi populations in vitro. Antimicrob Agents Chemother 59:6288–6295. https://doi.org/10.1128/AAC.00883-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cabello FC, Godfrey HP, Bugrysheva JV, Newman SA (2017) Sleeper cells: the stringent response and persistence in the Borreliella (Borrelia) burgdorferi enzootic cycle. Environ. Microbiol. 19:3846–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hodzic E, Imai DM, Escobar E (2019) Generality of post-antimicrobial treatment persistence of borrelia burgdorferi strains N40 and B31 in genetically susceptible and resistant mouse strains. Infect Immun 87. https://doi.org/10.1128/IAI.00442-19

  35. Straubinger RK, Summers BA, Chang YF, Appel MJG (1997) Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol 35:111–116. https://doi.org/10.1177/000992289703600514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Embers ME, Barthold SW, Borda JT et al (2012) Persistence of borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS One 7:1–12. https://doi.org/10.1371/journal.pone.0029914

    Article  CAS  Google Scholar 

  37. Nadelman RB, Nowakowski J, Forseter G et al (1993) Failure to isolate borrelia burgdorferi after antimicrobial therapy in culture-documented Lyme borreliosis associated with erythema migrans: Report of a prospective study. Am J Med 94:583–588. https://doi.org/10.1016/0002-9343(93)90208-7

    Article  CAS  PubMed  Google Scholar 

  38. Baker PJ, Wormser GP (2017) The clinical relevance of studies on borrelia burgdorferi persisters. Am J Med. https://doi.org/10.1016/j.amjmed.2017.04.014

    Article  PubMed  Google Scholar 

  39. Hunfeld KP, Kraiczy P, Kekoukh E et al (2002) Standardised in vitro susceptibility testing of Borrelia burgdorferi against well-known and newly developed antimicrobial agents - Possible implications for new therapeutic approaches to lyme disease. In: International Journal of Medical Microbiology. Elsevier GmbH, pp 125–137

  40. Iliopoulou BP, Guerau-de-Arellano M, Huber BT (2009) HLA-DR alleles determine responsiveness to Borrelia burgdorferi antigens in a mouse model of self-perpetuating arthritis. Arthritis Rheum 60:3831–3840. https://doi.org/10.1002/art.25005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steere AC, Klitz W, Drouin EE et al (2006) Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide. J Exp Med 203:961–971. https://doi.org/10.1084/jem.20052471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bockenstedt LK, Gonzalez DG, Haberman AM, Belperron AA (2012) Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J Clin Invest 122:2652–2660. https://doi.org/10.1172/JCI58813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strle K, Sulka KB, Pianta A et al (2017) T-Helper 17 cell cytokine responses in Lyme disease correlate with borrelia burgdorferi antibodies during early infection and with autoantibodies late in the illness in patients with antibiotic-refractory Lyme arthritis. Clin Infect Dis 64:930–938. https://doi.org/10.1093/cid/cix002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Divan A, Budd RC, Tobin RP, Newell-Rogers MK (2015) γδ T Cells and dendritic cells in refractory Lyme arthritis. J Leukoc Biol 97:653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lochhead RB, Arvikar SL, Aversa JM et al (2019) Robust interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfectious Borrelia burgdorferi-induced Lyme arthritis. Cell Microbiol 21. https://doi.org/10.1111/cmi.12954

  46. Vudattu NK, Strle K, Steere AC, Drouin EE (2013) Dysregulation of CD4+CD25high T cells in the synovial fluid of patients with antibiotic-refractory lyme arthritis. Arthritis Rheum 65:1643–1653. https://doi.org/10.1002/art.37910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shin JJ, Glickstein LJ, Steere AC (2007) High levels of inflammatory chemokines and cytokines in joint fluid and synovial tissue throughout the course of antibiotic-refractory lyme arthritis. Arthritis Rheum 56:1325–35. https://doi.org/10.1002/art.22441

    Article  CAS  PubMed  Google Scholar 

  48. Tory HO, Zurakowski D, Sundel RP (2010) Outcomes of children treated for lyme arthritis: Results of a large pediatric cohort. J Rheumatol 37:1049–1055. https://doi.org/10.3899/jrheum.090711

    Article  PubMed  Google Scholar 

  49. Steere AC, Angelis SM (2006) Therapy for lyme arthritis: strategies for the treatment of antibiotic-refractory arthritis. Arthritis Rheum 54:3079–3086

    Article  CAS  PubMed  Google Scholar 

  50. Aucott JN, Soloski MJ, Rebman AW et al (2016) CCL19 as a chemokine risk factor for posttreatment lyme disease syndrome: a prospective clinical cohort study. Clin Vaccine Immunol 23:757–766. https://doi.org/10.1128/CVI.00071-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strle K, Stupica D, Drouin EE et al (2013) Elevated levels of IL-23 in a subset of patients with post-Lyme disease symptoms following erythema migrans. https://doi.org/10.1093/cid/cit735

  52. Uhde M, Ajamian M, Li X et al (2016) Expression of C-reactive protein and serum amyloid A in early to late manifestations of Lyme disease. Clin Infect Dis. https://doi.org/10.1093/cid/ciw599

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jacek E, Fallon BA, Chandra A et al (2013) Increased IFNα activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J Neuroimmunol 255:85–91

    Article  CAS  PubMed  Google Scholar 

  54. Klempner MS, Hu LT, Evans J et al (2001) Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N Engl J Med 345:85–92. https://doi.org/10.1056/NEJM200107123450202

    Article  CAS  PubMed  Google Scholar 

  55. Hickie I, Davenport T, Wakefield D et al (2006) Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. Br Med J 333:575–578. https://doi.org/10.1136/bmj.38933.585764.AE

    Article  Google Scholar 

  56. Batheja S, Nields JA, Landa A, Fallon BA (2013) Post-treatment lyme syndrome and central sensitization. J Neuropsychiatry Clin Neurosci 25:176–186

    Article  PubMed  Google Scholar 

  57. Wormser GP, Weitzner E, McKenna D et al (2015) Brief report: long-term assessment of fibromyalgia in patients with culture-confirmed Lyme disease. Arthritis Rheumatol 67:837–839. https://doi.org/10.1002/ART.38972

    Article  PubMed  Google Scholar 

  58. Eg S, Ma G, Ml C et al (2000) Long-term outcomes of persons with Lyme disease. JAMA 283:609–616. https://doi.org/10.1001/JAMA.283.5.609

    Article  Google Scholar 

  59. Lantos PM (2015) Chronic Lyme disease. Infect Dis Clin North Am 29:325–340

    Article  PubMed  PubMed Central  Google Scholar 

  60. Krupp LB, Hyman LG, Grimson R et al (2003) Study and treatment of post Lyme disease (STOP-LD): a randomized double masked clinical trial. Neurology 60:1923–1930. https://doi.org/10.1212/01.WNL.0000071227.23769.9E

    Article  CAS  PubMed  Google Scholar 

  61. Kaplan RF, Trevino RP, Johnson GM et al (2003) Cognitive function in post-treatment Lyme disease: Do additional antibiotics help? Neurology 60:1916–1922. https://doi.org/10.1212/01.WNL.0000068030.26992.25

    Article  CAS  PubMed  Google Scholar 

  62. Fallon BA, Keilp JG, Corbera KM et al (2008) A randomized, placebo-controlled trial of repeated iv antibiotic therapy for lyme encephalopathy symbol. Neurology 70:992–1003. https://doi.org/10.1212/01.wnl.0000284604.61160.2d

    Article  CAS  PubMed  Google Scholar 

  63. Patel R, Grogg KL, Edwards WD et al (2000) Death from inappropriate therapy for Lyme disease. Clin Infect Dis 31:1107–1109. https://doi.org/10.1086/318138

    Article  CAS  PubMed  Google Scholar 

  64. Halperin JJ, Shapiro ED, Logigian E et al (2007) Practice parameter: treatment of nervous system Lyme disease (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 69:91–102. https://doi.org/10.1212/01.wnl.0000265517.66976.28

    Article  CAS  PubMed  Google Scholar 

  65. Berende A, Hofstede HJMT, Vos FJ et al (2016) Randomized trial of longer-term therapy for symptoms attributed to lyme disease. N Engl J Med 374:1209–1220. https://doi.org/10.1056/NEJMoa1505425

    Article  CAS  PubMed  Google Scholar 

  66. Goodlet KJ, Fairman KA (2018) Adverse events associated with antibiotics and intravenous therapies for post-lyme disease syndrome in a commercially insured sample. Clin Infect Dis 67:1568–1574. https://doi.org/10.1093/cid/ciy329

    Article  PubMed  Google Scholar 

  67. Marzec NS, Nelson C, Waldron PR et al (2017) Serious bacterial infections acquired during treatment of patients given a diagnosis of chronic Lyme disease—United States. MMWR Morb Mortal Wkly Rep 66:607–609. https://doi.org/10.15585/mmwr.mm6623a3

  68. Lantos PM, Shapiro ED, Auwaerter PG et al (2015) Unorthodox alternative therapies marketed to treat Lyme disease. https://doi.org/10.1093/cid/civ186

    Article  Google Scholar 

  69. Crisp D, Ashby P (1996) Lyme radiculoneuritis treated with intravenous immunoglobulin. Neurology 46:1174–1175. https://doi.org/10.1212/WNL.46.4.1174

    Article  CAS  PubMed  Google Scholar 

  70. Celik T, Celik U, Kömür M et al (2016) Pediatric Lyme neuroborreliosis: different clinical presentations of the same agent; single center experience. Neuro Endocrinol Lett 37

  71. Rocha R, Lisboa L, Neves J et al (2012) Neuroborreliosis presenting as acute disseminated encephalomyelitis. Pediatr Emerg Care 28:1374–1376. https://doi.org/10.1097/PEC.0b013e318276c51d

    Article  PubMed  Google Scholar 

  72. Gannon M (2005) Alternative treatment gives patient a chance at a pain-free life. New Haven Regist. https://www.nhregister.com/news/article/Alternative-treatment-gives-patient-a-chance-at-a-11651283.php. Accessed 12 Jul 2020

  73. Fallon B, Marconi R (2009) 2009 10th Annual Scientific Conference: 34 Years, From Lyme, CT, Across the Nation Conference Summary. Lyme Dis Assoc. https://lymediseaseassociation.org/lda-conferences/summary-pages/2009-conf-summary/. Accessed 12 Jul 2020

  74. Stiehm ER (2013) Adverse effects of human immunoglobulin therapy. Transfus Med Rev 27:171–178. https://doi.org/10.1016/j.tmrv.2013.05.004

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported, in part, by the following grants: UL1TR000142 (E.D.S.) and KL2-TR001862 (E.D.S) from the National Center for Advancing Translational Science (NCATS) at the National Institutes of Health and NIH Roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review article conception and literature search. The first draft of the manuscript was written by Katelyn Wong and all authors modified subsequent versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Katelyn H. Wong.

Ethics declarations

Competing Interests

Dr. Shapiro has served as an expert witness, has received an honorarium for consulting with Pfizer, and receives royalties from UptoDate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K.H., Shapiro, E.D. & Soffer, G.K. A Review of Post-treatment Lyme Disease Syndrome and Chronic Lyme Disease for the Practicing Immunologist. Clinic Rev Allerg Immunol 62, 264–271 (2022). https://doi.org/10.1007/s12016-021-08906-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-021-08906-w

Keywords

Navigation