Skip to main content

Advertisement

Log in

Metabolic Syndrome Modulates Protein Import into the Mitochondria of Porcine Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are currently being tested in several clinical trials. Mitochondria regulate many aspects of MSC function. Mitochondrial preproteins are rapidly translated and trafficked into the mitochondrion for assembly in their final destination, but whether coexisting cardiovascular risk factors modulate this process is unknown. We hypothesized that metabolic syndrome (MetS) modulates mitochondrial protein import in porcine MSCs. MSCs were isolated from porcine abdominal adipose tissue after 16 weeks of Lean or MetS diet (n = 5 each). RNA-sequencing was performed and differentially expressed mitochondrial mRNAs and microRNAs were identified and validated. Protein expression of transporters of mitochondrial proteins (presequences and precursors) and their respective substrates were measured. Mitochondrial homeostasis was assessed by Western blot and function by cytochrome-c oxidase-IV activity. Forty-five mitochondrial mRNAs were upregulated and 25 downregulated in MetS-MSCs compared to Lean-MSCs. mRNAs upregulated in MetS-MSCs encoded for precursor proteins, whereas those downregulated encoded for presequences. Micro-RNAs upregulated in MetS-MSCs primarily target mRNAs encoding for presequences. Transporters of precursor proteins and their substrates were also upregulated, associated with changes in mitochondrial homeostasis and dysfunction. MetS interferes with mitochondrial protein import, favoring upregulation of precursor proteins, which might be linked to post-transcriptional regulation of presequences. This in turn alters mitochondrial homeostasis and impairs energy production. Our observations highlight the importance of mitochondria in MSC function and provide a molecular framework for optimization of cell-based strategies as we move towards their clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spees, J. L., Lee, R. H., & Gregory, C. A. (2016). Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research & Therapy, 7, 125.

    Article  CAS  Google Scholar 

  2. Hosseinikia, R., Nikbakht, M. R., Moghaddam, A. A., et al. (2017). Molecular and cellular interactions of allogenic and Autologus mesenchymal stem cells with innate and acquired immunity and their role in regenerative medicine. International Journal of Hematology-Oncology and Stem Cell Research, 11, 63–77.

    PubMed  PubMed Central  Google Scholar 

  3. Badimon, L., Onate, B., & Vilahur, G. (2015). Adipose-derived mesenchymal stem cells and their reparative potential in ischemic heart disease. Revista Espanola de Cardiologia (Engl Ed), 68, 599–611.

    Article  Google Scholar 

  4. Hickson, L. J., Eirin, A., & Lerman, L. O. (2016). Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney International, 89, 767–778.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Friedman, J. R., & Nunnari, J. (2014). Mitochondrial form and function. Nature, 505, 335–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marycz, K., Kornicka, K., Basinska, K., & Czyrek, A. (2016). Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: New insight into EqASCs Isolated from EMS horses in the context of their aging. Oxidative Medicine and Cellular Longevity, 2016, 4710326.

    PubMed  Google Scholar 

  7. Marycz, K., Kornicka, K., Maredziak, M., et al. (2016). Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. Journal of Cellular and Molecular Medicine, 20, 2384–2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marycz, K., Kornicka, K., Grzesiak, J., et al. (2016). Macroautophagy and selective Mitophagy ameliorate Chondrogenic differentiation potential in adipose stem cells of equine metabolic syndrome: New findings in the field of progenitor cells differentiation. Oxidative Medicine and Cellular Longevity, 2016, 3718468.

    PubMed  PubMed Central  Google Scholar 

  9. Lesnik, C., Golani-Armon, A., & Arava, Y. (2015). Localized translation near the mitochondrial outer membrane: An update. RNA Biology, 12, 801–809.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dudek, J., Rehling, P., & van der Laan, M. (2013). Mitochondrial protein import: Common principles and physiological networks. Biochimica et Biophysica Acta, 1833, 274–285.

    Article  CAS  PubMed  Google Scholar 

  11. Wiedemann, N., Frazier, A. E., & Pfanner, N. (2004). The protein import machinery of mitochondria. The Journal of Biological Chemistry, 279, 14473–14476.

    Article  CAS  PubMed  Google Scholar 

  12. Pawar, A. S., Zhu, X. Y., Eirin, A., et al. (2015). Adipose tissue remodeling in a novel domestic porcine model of diet-induced obesity. Obesity (Silver Spring), 23, 399–407.

    Article  CAS  Google Scholar 

  13. Zhu, X. Y., Ma, S., Eirin, A., et al. (2016). Functional plasticity of adipose-derived stromal cells during development of obesity. Stem Cells Translational Medicine, 5, 893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eirin, A., Riester, S. M., Zhu, X. Y., et al. (2014). MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene, 551, 55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calvo, S. E., Clauser, K. R., & Mootha, V. K. (2016). MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Research, 44, D1251–D1257.

    Article  CAS  PubMed  Google Scholar 

  16. Agarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4.

  17. Coronnello, C., & Benos, P. V. (2013). ComiR: Combinatorial microRNA target prediction tool. Nucleic Acids Research, 41, W159–W164.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Saad, A., Zhu, X. Y., Herrmann, S., et al. (2016). Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia. Stem Cell Research & Therapy, 7, 128.

    Article  CAS  Google Scholar 

  19. Eirin, A., Ebrahimi, B., Zhang, X., et al. (2014). Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovascular Research, 103, 461–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, X., Li, Z. L., Crane, J. A., et al. (2014). Valsartan regulates myocardial autophagy and mitochondrial turnover in experimental hypertension. Hypertension, 64, 87–93.

    Article  CAS  PubMed  Google Scholar 

  21. Pattappa, G., Heywood, H. K., de Bruijn, J. D., & Lee, D. A. (2011). The metabolism of human mesenchymal stem cells during proliferation and differentiation. Journal of Cellular Physiology, 226, 2562–2570.

    Article  CAS  PubMed  Google Scholar 

  22. Costello, L. C., & Franklin, R. B. (2013). A review of the important central role of altered citrate metabolism during the process of stem cell differentiation. Journal of Regenerative Medicine & Tissue Engineering, 2.

  23. Chen, C. T., Shih, Y. R., Kuo, T. K., et al. (2008). Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells, 26, 960–968.

    Article  CAS  PubMed  Google Scholar 

  24. Hsu, Y. C., Wu, Y. T., Yu, T. H., & Wei, Y. H. (2016). Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Seminars in Cell & Developmental Biology, 52, 119–131.

    Article  CAS  Google Scholar 

  25. Folmes, C. D., Dzeja, P. P., Nelson, T. J., & Terzic, A. (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11, 596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Prat, L., Sousa-Victor, P., & Munoz-Canoves, P. (2017). Proteostatic and metabolic control of Stemness. Cell Stem Cell, 20, 593–608.

    Article  CAS  PubMed  Google Scholar 

  27. Hu, C., Fan, L., Cen, P., et al. (2016). Energy metabolism plays a critical role in stem cell maintenance and differentiation. International Journal of Molecular Sciences, 17, 253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7):522–31.

  29. Crabbe, M. A. E., Gijbels, K., Visser, A., Craeye, D., Walbers, S., Pinxteren, J., et al. (2016). Using miRNA-mRNA interaction analysis to link biologically relevant miRNAs to stem cell identity testing for next-generation culturing development. Stem Cells Translational Medicine, 5(6):709–722.

  30. Du, J. K., Cong, B. H., Yu, Q., Wang, H., Wang, L., Wang, C. N., et al. (2016). Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. Free Radical Biology and Medicine, 96, 406–417.

  31. Jornayvaz, F. R., & Shulman, G. I. (2010). Regulation of mitochondrial biogenesis. Essays in Biochemistry, 47, 69–84.

    Article  CAS  PubMed  Google Scholar 

  32. Ding, W. X., & Yin, X. M. (2012). Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biological Chemistry, 393, 547–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, Y., Park, J. S., Deng, J. H., & Bai, Y. (2006). Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. Journal of Bioenergetics and Biomembranes, 38, 283–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the NIH grant numbers: DK104273, HL123160, and DK102325, DK106427, and the Mayo Clinic: Mary Kathryn and Michael B. Panitch Career Development Award. The funding sources had no involvement in study design, conduct, analysis or interpretation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Eirin.

Ethics declarations

Conflict of Interest

The authors do not have any financial conflict of interests to disclose.

Research Involving Animals

All experiments were conducted with the approval of the Mayo Clinic Animal Care and Use Committee (approval case number: A00003694–18), which regulates and establishes procedures for the scientific use of animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajani Nargesi, A., Zhu, XY., Hickson, L.J. et al. Metabolic Syndrome Modulates Protein Import into the Mitochondria of Porcine Mesenchymal Stem Cells. Stem Cell Rev and Rep 15, 427–438 (2019). https://doi.org/10.1007/s12015-018-9855-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9855-4

Keywords

Navigation