Skip to main content

Advertisement

Log in

Role of Telomeric TRF2 in Orosphere Formation and CSC Phenotype Maintenance Through Efficient DNA Repair Pathway and its Correlation with Recurrence in OSCC

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The major problem to effective treatment of oral cancer is the presence of therapy resistance. Presence of cancer stem cell in the bulk of tumor have been implicated in therapeutic resistance. In this study, we report a non-telomeric role of TRF2 in formation of oral cancer spheroids and CSC phenotype maintenance via an efficient DNA damage repair mechanism in the presence of chemotherapeutic insult. We report reduced sphere formation efficiency and reduced spheroid size in TRF2 silenced oral cancer cell lines. TRF2 silenced orospheres further reported reduced proliferative capacity as compared to non-silenced orospheres. Furthermore, TRF2 silencing hampered the migratory potential of oral cancer cell line and also reduced the expression of several CSC markers like CD44, Oct4, Sox2, KLF4 and c-Myc along with β-catenin and hTERT molecules both in Cal27 cell line and generated orospheres. TRF2 silencing impaired efficient DNA damage repair capacity of non-orospheric and orospheric cells and repressed ERCC1 expression levels when treated with Cisplatin. TRF2 overexpression was also observed to correlate with poor overall survival and disease relapse of OSCC patients. In silico studies further identified several amino acid residues that show high binding affinity and strong protein-protein interactions among TRF2 and CSC marker KLF4. Hence, our report confirms a non-telomeric role of TRF2 in spheroid generation, maintenance of CSC phenotype and efficient DNA damage repair capacity contributing to chemotherapy resistance in oral cancer cell line. We further iterate the use of TRF2 as a prognostic marker in OSCC for faster detection and improved survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: TRF2 overexpression linked to poor survival and disease relapse.
Fig. 2: High expression of shelterin component and telomerase in orospheres.
Fig. 3: Reduced spheroid formation efficiency, size and proliferative capacity in absence of TRF2.
Fig. 4: Impaired migratory potential of Cal27 oral cancer cells.
Fig. 5: Transiently silencing TRF2 hampers efficient DNA damage repair capacity in the presence of Cisplatin.
Fig. 6: Loss of TRF2 function affects Cancer Stem Cell expression status.
Fig. 7: TRF2 silencing represses CSC marker expression in orospheres.
Fig. 8: Interaction between TRF2 and KLF4 proteins.

Similar content being viewed by others

References

  1. Padhi, S., Saha, A., Kar, M., Ghosh, C., Adhya, A., Baisakh, M., Mohapatra, N., Venkatesan, S., Hande, M. P., & Banerjee, B. (2015). Clinico-pathological correlation of β-catenin and telomere dysfunction in head and neck squamous cell carcinoma patients. Journal of Cancer, 6, 192–202.

    Article  CAS  Google Scholar 

  2. Kekatpure, V. K. M. (2010). Oral Cancer in India: Learning from different populations. Cancer Prevention.

  3. González-Moles, M. A., Scully, C., Ruiz-Ávila, I., & Plaza-Campillo, J. J. (2013). The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncology, 49, 738–746.

    Article  Google Scholar 

  4. Krishnamurthy, S., & Head, N. J. E. (2012). Neck Cancer stem cells. Journal of Dental Research, 91, 334–340.

    Article  CAS  Google Scholar 

  5. Chinn, S. B., Darr, O. A., Owen, J. H., Bellile, E., McHugh, J. B., Spector, M. E., Papagerakis, S. M., Chepeha, D. B., Bradford, C. R., Carey, T. E., & Prince, M. E. P. (2015). Cancer stem cells: Mediators of tumorigenesis and metastasis in head and neck squamous cell carcinoma. Head & Neck, 37, 317–326.

    Article  Google Scholar 

  6. Naik, P. P., Das, D. N., Panda, P. K., Mukhopadhyay, S., Sinha, N., Praharaj, P. P., Agarwal, R., & Bhutia, S. K. (2016). Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncology, 62, 122–135.

    Article  CAS  Google Scholar 

  7. Sukach, A. N., & Ivanov, E. N. (2007). Formation of spherical colonies as a property of stem cells. Cell and Tissue Biology, 1, 476–481.

    Article  Google Scholar 

  8. Fujii, H., Honoki, K., Tsujiuchi, T., Kido, A., Yoshitani, K., & Takakura, Y. (2009). Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. International Journal of Oncology, 34, 1381–1386.

    CAS  PubMed  Google Scholar 

  9. Qiu, X., Wang, Z., Li, Y., Miao, Y., Ren, Y., & Luan, Y. (2012). Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446. Cancer Letters, 323, 161–170.

    Article  CAS  Google Scholar 

  10. Castillo, V., Valenzuela, R., Huidobro, C., Contreras, H. R., & Castellon, E. A. (2014). Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. International Journal of Oncology, 45, 985–994.

    Article  CAS  Google Scholar 

  11. Iwai, S., Yonekawa, A., Harada, C., Hamada, M., Katagiri, W., Nakazawa, M., & Yura, Y. (2010). Involvement of the Wnt-beta-catenin pathway in invasion and migration of oral squamous carcinoma cells. International Journal of Oncology, 37, 1095–1103.

    Article  CAS  Google Scholar 

  12. Prosperi, J. R., Luu, H. H., & Goss, K. H. (2011). Dysregulation of the Wnt pathway in solid tumors. In K. H. Goss & M. Kahn (Eds.), Targeting the Wnt pathway in Cancer (pp. 81–128). New York, NY: Springer New York.

    Chapter  Google Scholar 

  13. Lee, S. H., Koo, B. S., Kim, J. M., Huang, S., Rho, Y. S., Bae, W. J., Kang, H. J., Kim, Y. S., Moon, J. H., & Lim, Y. C. (2014). Wnt/β-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. The Journal of Pathology, 234, 99–107.

    Article  CAS  Google Scholar 

  14. Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., Sun, L., Yang, X., Wang, Y., Zhang, Y., & Shang, Y. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. The Journal of Biological Chemistry, 283, 17969–17978.

    Article  CAS  Google Scholar 

  15. Cai, C., & Zhu, X. (2012). The Wnt/beta-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Molecular Medicine Reports, 5, 1191–1196.

    CAS  PubMed  Google Scholar 

  16. Diala, I., Wagner, N., Magdinier, F., Shkreli, M., Sirakov, M., Bauwens, S., Schluth-Bolard, C., Simonet, T., Renault, V. M., Ye, J., Djerbi, A., Pineau, P., Choi, J., Artandi, S., Dejean, A., Plateroti, M., & Gilson, E. (2013). Telomere protection and TRF2 expression are enhanced by the canonical Wnt signalling pathway. EMBO Reports, 14, 356–363.

    Article  CAS  Google Scholar 

  17. Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., del Valle, I., Hein, K., Vogt, R., & Kemler, R. (2012). Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science (New York, N.Y.), 336, 1549–1554.

    Article  CAS  Google Scholar 

  18. Feuerhahn, S., Chen, L. Y., Luke, B., & Porro, A. (2015). No DDRama at chromosome ends: TRF2 takes Centre stage. Trends in Biochemical Sciences, 40, 275–285.

    Article  CAS  Google Scholar 

  19. Tanaka, H., Mendonca, M. S., Bradshaw, P. S., et al. (2005). DNA damage-induced phosphorylation of the human telomere-associated protein TRF2. Proceedings of the National Academy of Sciences of the United States of America, 15539–15544.

    Article  CAS  Google Scholar 

  20. Bradshaw, P. S., Stavropoulos, D. J., & Meyn, M. S. (2005). Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nature Genetics, 37, 193–197.

    Article  CAS  Google Scholar 

  21. Mao, Z., Seluanov, A., Jiang, Y., & Gorbunova, V. (2007). TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 104, 13068–13073.

    Article  CAS  Google Scholar 

  22. Saha, A. P. S., Kar, M., Roy, S., Maiti, P., & Banerjee, B. (2017). Role of TRF2 in efficient DNA repair, spheroid formation and Cancer stem cell maintenance. Oncomedicine, 2, 71–79.

    Article  Google Scholar 

  23. Anaya, J. (2016). OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. Peer Journal of Computer Science, 2, e67.

    Article  Google Scholar 

  24. Borowicz, S., Van Scoyk, M., Avasarala, S., et al. (2014). The Soft Agar Colony Formation Assay., e51998.

  25. Saha, A., Shree Padhi, S., Roy, S., & Banerjee, B. (2014). Method of detecting new cancer stem cell-like enrichment in development front assay (DFA). Journal of Stem Cells, 9, 235–242.

    PubMed  Google Scholar 

  26. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  27. Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004). ClusPro: A fully automated algorithm for protein-protein docking. Nucleic Acids Research, 32, W96–W99.

    Article  CAS  Google Scholar 

  28. Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8, 127–134.

    Article  CAS  Google Scholar 

  29. Jenik, M., Parra, R. G., Radusky, L. G., Turjanski, A., Wolynes, P. G., & Ferreiro, D. U. (2012). Protein frustratometer: A tool to localize energetic frustration in protein molecules. Nucleic Acids Research, 40, W348–W351.

    Article  CAS  Google Scholar 

  30. Siddik, Z. H. (2003). Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 22, 7265–7279.

    Article  CAS  Google Scholar 

  31. Zamble, D. B., & Lippard, S. J. (1995). Cisplatin and DNA repair in cancer chemotherapy. Trends in Biochemical Sciences, 20, 435–439.

    Article  CAS  Google Scholar 

  32. Niedernhofer, L. J., Odijk, H., Budzowska, M., van Drunen, E., Maas, A., Theil, A. F., de Wit, J., Jaspers, N. G. J., Beverloo, H. B., Hoeijmakers, J. H. J., & Kanaar, R. (2004). The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Molecular and Cellular Biology, 24, 5776–5787.

    Article  CAS  Google Scholar 

  33. Britten, R. A., Liu, D., Tessier, A., Hutchison, M. J., & Murray, D. (2000). ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. International Journal of Cancer, 89, 453–457.

    Article  CAS  Google Scholar 

  34. Arora, S., Kothandapani, A., Tillison, K., Kalman-Maltese, V., & Patrick, S. M. (2010). Downregulation of XPF–ERCC1 enhances cisplatin efficacy in cancer cells. DNA Repair, 9, 745–753.

    Article  CAS  Google Scholar 

  35. McNeil, E. M., & Melton, D. W. (2012). DNA repair endonuclease ERCC1–XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Research, 40, 9990–10004.

    Article  CAS  Google Scholar 

  36. Zhu, X. D., Niedernhofer, L., Kuster, B., Mann, M., Hoeijmakers, J. H., & de Lange, T. (2003). ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Molecular Cell, 12, 1489–1498.

    Article  CAS  Google Scholar 

  37. Munoz, P., Blanco, R., Flores, J. M., & Blasco, M. A. (2005). XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nature Genetics, 37, 1063–1071.

    Article  CAS  Google Scholar 

  38. Wu, Y., Mitchell, T. R. H., & Zhu, X.-D. (2008). Human XPF controls TRF2 and telomere length maintenance through distinctive mechanisms. Mechanisms of Ageing and Development, 129, 602–610.

    Article  CAS  Google Scholar 

  39. Liu, X., Huang, J., Chen, T., Wang, Y., Xin, S., Li, J., Pei, G., & Kang, J. (2008). Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Research, 18, 1177–1189.

    Article  CAS  Google Scholar 

  40. Müller, M., Hermann, P. C., Liebau, S., Weidgang, C., Seufferlein, T., Kleger, A., & Perkhofer, L. (2016). The role of pluripotency factors to drive stemness in gastrointestinal cancer. Stem Cell Research, 16, 349–357.

    Article  Google Scholar 

  41. Koo, B. S., Lee, S. H., Kim, J. M., Huang, S., Kim, S. H., Rho, Y. S., Bae, W. J., Kang, H. J., Kim, Y. S., Moon, J. H., & Lim, Y. C. (2015). Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene, 34, 2317–2324.

    Article  CAS  Google Scholar 

  42. Yu, F., Li, J., Chen, H., Fu, J., Ray, S., Huang, S., Zheng, H., & Ai, W. (2011). Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene, 30, 2161–2172.

    Article  CAS  Google Scholar 

  43. Gabay, M., Li, Y., & Felsher, D. W. (2014). MYC activation is a Hallmark of Cancer initiation and maintenance. Cold Spring Harbor Perspectives in Medicine, 4, a014241.

    Article  Google Scholar 

  44. Ghuwalewala, S., Ghatak, D., Das, P., Dey, S., Sarkar, S., Alam, N., Panda, C. K., & Roychoudhury, S. (2016). CD44highCD24low molecular signature determines the Cancer stem cell and EMT phenotype in oral squamous cell carcinoma. Stem Cell Research, 16, 405–417.

    Article  CAS  Google Scholar 

  45. Fujiwara, Y., Yoshikawa, R., Tsujie, M., et al. (2015). CD44, a cancer stemness marker, to predict poor clinical outcome of esophageal cancer patients after neoadjuvant chemoradiotherapy. Journal of Clinical Oncology, 33, e15068-e.

    Google Scholar 

  46. Chanmee, T., Ontong, P., Kimata, K., & Itano, N. (2015). Key roles of Hyaluronan and its CD44 receptor in the Stemness and survival of Cancer stem cells. Frontiers in Oncology, 5, 180.

    Article  Google Scholar 

  47. Shi Y, Ai W. (2013) Function of KLF4 in stem cell biology. In: Bhartiya D, Lenka N, eds. Pluripotent Stem Cells. Rijeka: InTech Ch. 15.

Download references

Acknowledgements

This work was supported by extramural funding from Department of Biotechnology (DBT), Government of India (Grant No.:BT/PR/14659/MED/31/108/2010) and Board of Research in Nuclear Science, Department of Atomic Energy, Government of India (Grant No.:2013/35/45/BRNS). We also acknowledge the technical support of the MSSB (Molecular Stress and Stem Cell Biology) group, School of Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birendranath Banerjee.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Supplementary Figure 1

Interaction between TRF2 and CD44 proteins. A) Schematic representation of interacting amino acid residues of TRF2 and CD44 protein as analysed by Cluspro 2.0 molecular docking software. B-E) Molecular docking studies showing interaction of amino acid residues TRF2 and CD44 proteins. TRF2 amino acid residues are coded in green color, KLF4 amino acid residues are coded in pink color. F) Figure showing protein backbone of TRF2 in blue color. Direct inter residue interactions shown with solid lines and the water-mediated interactions in dash lines. Green denotes minimally frustrated regions, highly frustrated regions are in red and neutral regions are not indicated. G) Figure showing projection of local frustration distribution in the amino acid sequences of TRF2 protein. The number of contacts within 5 Å of the C-α of each residue is plotted, as classified according to their frustration index. H) Figure showing protein backbone of CD44 in blue color. Direct inter residue interactions are shown with solid lines and the water-mediated interactions in dash lines. Green denotes minimally frustrated regions, highly frustrated regions are in red and neutral regions are not shown. I) Figure showing projection of local frustration distribution in the amino acid sequences of KLF4 protein. The number of contacts within 5 Å of the C-α of each residue is plotted, as classified according to their frustration index. No interacting residues of high frustrations between TRF2 and CD44 were observed. (PNG 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Roy, S., Kar, M. et al. Role of Telomeric TRF2 in Orosphere Formation and CSC Phenotype Maintenance Through Efficient DNA Repair Pathway and its Correlation with Recurrence in OSCC. Stem Cell Rev and Rep 14, 871–887 (2018). https://doi.org/10.1007/s12015-018-9823-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9823-z

Keywords

Navigation