Skip to main content
Log in

Cytoskeletal Disassembly and Cell Rounding Promotes Adipogenesis from ES Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Biomechanical signals such as cell shape and spreading play an important role in controlling stem cell commitment. Cell shape, adhesion and spreading are also affected by calreticulin, a multifunctional calcium-binding protein, which influences several cellular processes, including adipogenesis. Here we show that cytoskeletal disruption in mouse embryonic stem cells using cytochalasin D or nocodazole promotes adipogenesis. While cytochalasin D disrupts stress fibres and inhibits focal adhesion formation, nocodazole depolymerises microtubules and promotes focal adhesion formation. Furthermore, cytochalasin D increases the levels of both total and activated calcium/calmodulin-dependent protein kinase II, whereas nocodazole decreases it. Nevertheless, both treatments significantly increase the adipogenic potential of embryonic stem cells in vitro. Both cytochalasin D and nocodazole exposure caused cell rounding suggesting that it is cell shape that causes the switch towards the adipogenic programme. Calreticulin-containing embryonic stem cells, under baseline conditions, show low adipogenic potential, have low activity of signalling via calcium/calmodulin-dependent protein kinase II and display normal adhesive properties and cellular spreading in comparison to the highly adipogenic but poorly spread calreticulin-deficient ES cells. We conclude that forced cell rounding via cytoskeletal disruption overrides the effects of calreticulin, an ER chaperone, thus negatively regulating adipogenesis via focal adhesion-mediated cell spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

C/EBP:

CCAAT-enhancer binding protein

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

EB:

embryoid body

EGTA:

ethylene glycol tetraacetic acid

ER:

endoplasmic reticulum

ES cells:

embryonic stem cells

GAPDH:

glyceraldehde 3-phosphate dehydrogenase

PBS:

Phosphate-buffered saline

PIPES:

Piperazine-1,4-bis(2-ethanesulfonic acid)

PPAR:

peroxisome proliferator activated receptor

SDS PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

WT:

wild type

References

  1. McDonald, J. A. (1989). Matrix regulation of cell shape and gene expression. Current Opinion in Cell Biology, 1, 995–999.

    Article  PubMed  CAS  Google Scholar 

  2. Ben-Ze’ev, A. (1991). Animal cell shape changes and gene expression. BioEssays, 13, 207–212.

    Article  PubMed  Google Scholar 

  3. Opas, M. (1994). Substratum mechanics and cell differentiation. International Review of Cytology, 150, 119–137.

    Article  PubMed  CAS  Google Scholar 

  4. Huang, S., & Ingber, D. E. (2000). Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Experimental Cell Research, 261, 91–103.

    Article  PubMed  CAS  Google Scholar 

  5. Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7, 265–275.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, J. J., Thampatty, B. P., Lin, J. S., & Im, H. J. (2007). Mechanoregulation of gene expression in fibroblasts. Gene, 391, 1–15.

    Article  PubMed  CAS  Google Scholar 

  7. Zajac, A. L., & Discher, D. E. (2008). Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling. Current Opinion in Cell Biology, 20, 609–615.

    Article  PubMed  CAS  Google Scholar 

  8. Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324, 1673–1677.

    Article  PubMed  CAS  Google Scholar 

  9. Saha, K., Pollock, J. F., Schaffer, D. V., & Healy, K. E. (2007). Designing synthetic materials to control stem cell phenotype. Current Opinion in Chemical Biology, 11, 381–387.

    Article  PubMed  CAS  Google Scholar 

  10. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    Article  PubMed  CAS  Google Scholar 

  11. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6, 483–495.

    Article  PubMed  CAS  Google Scholar 

  12. Szabo, E., Feng, T., Dziak, E., & Opas, M. (2009). Cell adhesion and spreading affect adipogenesis from ES cells: the role of calreticulin. Stem Cells, 27, 2092–2102.

    Article  PubMed  CAS  Google Scholar 

  13. Rosen, E. D., Walkey, C. J., Puigserver, P., & Spiegelman, B. M. (2000). Transcriptional regulation of adipogenesis. Genes and Development, 14, 1293–1307.

    PubMed  CAS  Google Scholar 

  14. Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., et al. (1999). Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Molecular Cell, 3, 151–158.

    Article  PubMed  CAS  Google Scholar 

  15. El-Jack, A. K., Hamm, J. K., Pilch, P. F., & Farmer, S. R. (1999). Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. Journal of Biological Chemistry, 274, 7946–7951.

    Article  PubMed  CAS  Google Scholar 

  16. Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology, 7, 885–896.

    Article  PubMed  CAS  Google Scholar 

  17. Szabo, E., Qiu, Y., Baksh, S., Michalak, M., & Opas, M. (2008). Calreticulin inhibits commitment to adipocyte differentiation. Journal of Cell Biology, 182, 103–116.

    Article  PubMed  CAS  Google Scholar 

  18. Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I., & Opas, M. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochemical Journal, 417, 651–666.

    Article  PubMed  CAS  Google Scholar 

  19. Abdel-Ghany, M., el Gendy, K., Zhang, S., & Racker, E. (1990). Control of src kinase activity by activators, inhibitors, and substrate chaperones. Proceedings of the National Academy of Sciences of the United States of America, 87, 7061–7065.

    Article  PubMed  CAS  Google Scholar 

  20. Benaim, G., & Villalobo, A. (2002). Phosphorylation of calmodulin. Functional implications. European Journal of Biochemistry, 269, 3619–3631.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, H., Goligorsky, M. S., & Malbon, C. C. (1997). Temporal activation of Ca2+-calmodulin-sensitive protein kinase type II is obligate for adipogenesis. Journal of Biological Chemistry, 272, 1817–1821.

    Article  PubMed  CAS  Google Scholar 

  22. Kennell, J. A., & MacDougald, O. A. (2005). Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms. Journal of Biological Chemistry, 280, 24004–24010.

    Article  PubMed  CAS  Google Scholar 

  23. Spiegelman, B. M., & Ginty, C. A. (1983). Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell, 35, 657–666.

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez Fernández, J. L., & Ben-Ze’ev, A. (1989). Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: Inhibition by extracellular matrix and polylysine. Differentiation, 42, 65–74.

    Article  PubMed  Google Scholar 

  25. Mesaeli, N., Nakamura, K., Zvaritch, E., Dickie, P., Dziak, E., Krause, K. H., et al. (1999). Calreticulin is essential for cardiac development. Journal of Cell Biology, 144, 857–868.

    Article  PubMed  CAS  Google Scholar 

  26. Li, J., Puceat, M., Perez-Terzic, C., Mery, A., Nakamura, K., Michalak, M., et al. (2002). Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis. Journal of Cell Biology, 158, 103–113.

    Article  PubMed  CAS  Google Scholar 

  27. Kurosawa, H. (2007). Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of Bioscience and Bioengineering, 103, 389–398.

    Article  PubMed  CAS  Google Scholar 

  28. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  29. Villagomez, M., Szabo, E., Podchenko, A., Feng, T., Papp, S., & Opas, M. (2009). Calreticulin and focal contact-dependent adhesion. Biochemistry and Cell Biology, 87, 545–556.

    Article  PubMed  CAS  Google Scholar 

  30. Domnina, L. V., Gelfand, V. I., Ivanova, O. Y., Leonova, E. V., Pletyushkina, O. Y., Vasiliev, J. M., et al. (1982). Effects of small doses of cytochalasins on fibroblasts: Preferential changes of active edges and focal contacts. Proceedings of the National Academy of Sciences of the United States of America, 79, 7754–7757.

    Article  PubMed  CAS  Google Scholar 

  31. Schliwa, M. (1982). Action of cytochalasin D on cytoskeletal networks. Journal of Cell Biology, 92, 79–91.

    Article  PubMed  CAS  Google Scholar 

  32. Papp, S., Fadel, M. P., Kim, H., McCulloch, C. A., & Opas, M. (2007). Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-src activity. Journal of Biological Chemistry, 282, 16585–16598.

    Article  PubMed  CAS  Google Scholar 

  33. Van’t Hof, W., & Van Meer, G. (1990). Generation of lipid polarity in intestinal epithelial (Caco- 2) cells: Sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane. Journal of Cell Biology, 111, 977–986.

    Article  Google Scholar 

  34. Papp, S., Szabo, E., Kim, H., McCulloch, C. A., & Opas, M. (2008). Kinase-dependent adhesion to fibronectin: regulation by calreticulin. Experimental Cell Research, 314, 1313–1326.

    Article  PubMed  CAS  Google Scholar 

  35. Papp, S., Dziak, E., & Opas, M. (2009). Embryonic stem cell derived cardiomyogenesis: a novel role for calreticulin as a regulator. Stem Cells, 27, 1507–1515.

    Article  PubMed  CAS  Google Scholar 

  36. Estes, B. T., Gimble, J. M., & Guilak, F. (2004). Mechanical signals as regulators of stem cell fate. Current Topics in Developmental Biology, 60, 91–126.

    Article  PubMed  CAS  Google Scholar 

  37. Kawaguchi, N., Sundberg, C., Kveiborg, M., Moghadaszadeh, B., Asmar, M., Dietrich, N., et al. (2003). ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function. Journal of Cell Sciences, 116, 3893–3904.

    Article  CAS  Google Scholar 

  38. Meyers, V. E., Zayzafoon, M., Douglas, J. T., & McDonald, J. M. (2005). RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. Journal of Bone and Mineral Research, 20, 1858–1866.

    Article  PubMed  CAS  Google Scholar 

  39. Noguchi, M., Hosoda, K., Fujikura, J., Fujimoto, M., Iwakura, H., Tomita, T., et al. (2007). Genetic and pharmacological inhibition of Rho-associated kinase II enhances adipogenesis. Journal of Biological Chemistry, 282, 29574–29583.

    Article  PubMed  CAS  Google Scholar 

  40. Spiegelman, B. M., & Farmer, S. R. (1982). Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell, 29, 53–60.

    Article  PubMed  CAS  Google Scholar 

  41. Folkman, J., & Greenspan, H. P. (1975). Influence of geometry on control of cell growth. Biochimica et Biophysica Acta, 417, 211–236.

    PubMed  CAS  Google Scholar 

  42. Folkman, J., & Moscona, A. A. (1978). Role of cell shape in growth control. Nature, 273, 345–349.

    Article  PubMed  CAS  Google Scholar 

  43. Bissell, M. J., Hall, H. G., & Parry, G. (1982). How does the extracellular matrix direct gene expression. Journal of Theoretical Biology, 99, 31–68.

    Article  PubMed  CAS  Google Scholar 

  44. Bissell, M. J., & Barcellos-Hoff, M. H. (1987). The influence of extracellular matrix on gene expression: is structure the message? Journal of Cell Science Supplement, 8, 327–343.

    PubMed  CAS  Google Scholar 

  45. Ingber, D. E., Dike, L., Hansen, L., Karp, S., Liley, H., Maniotis, A., et al. (1994). Cellular Tensegrity: Exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. International Review of Cytology, 150, 173–224.

    Article  PubMed  CAS  Google Scholar 

  46. Huang, S., & Ingber, D. E. (2005). Cell tension, matrix mechanics, and cancer development. Cancer Cell, 8, 175–176.

    Article  PubMed  CAS  Google Scholar 

  47. Assoian, R. K., & Klein, E. A. (2008). Growth control by intracellular tension and extracellular stiffness. Trends in Cell Biology, 18, 347–352.

    Article  PubMed  CAS  Google Scholar 

  48. Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., et al. (1971). Microfilaments in cellular and developmental processes. Science, 171, 135–143.

    Article  PubMed  CAS  Google Scholar 

  49. Ivanova, O. Y., Margolis, L. B., & Vasiliev, J. M. (1976). Effect of colcemid on the spreading of fibroblasts in culture. Experimental Cell Research, 101, 207–219.

    Article  PubMed  CAS  Google Scholar 

  50. Ambrose, E. J. (1972). Cell shapes and cell contacts. Acta Protozoologica, 11, 9–22.

    Google Scholar 

  51. Vasiliev, J. M. (1987). Actin cortex and microtubular system in morphogenesis: cooperation and competition. Journal of Cell Science Supplement, 8, 1–18.

    PubMed  CAS  Google Scholar 

  52. Ingber, D. E. (1993). Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. Journal of Cell Sciences, 104, 613–627.

    Google Scholar 

  53. Ingber, D. E. (1997). Tensegrity: the architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.

    Article  PubMed  CAS  Google Scholar 

  54. Burridge, K., & Chrzanowska-Wodnicka, M. (1996). Focal adhesions, contractility, and signaling. Annual Review of Cell Developmental Biology, 12, 463–518.

    Article  CAS  Google Scholar 

  55. Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology, 2, 793–805.

    Article  PubMed  CAS  Google Scholar 

  56. Goldmann, W. H. (2002). Mechanical aspects of cell shape regulation and signaling. Cell Biology International, 26, 313–317.

    Article  PubMed  CAS  Google Scholar 

  57. Pellegrin, S., & Mellor, H. (2007). Actin stress fibres. Journal of Cell Sciences, 120, 3491–3499.

    Article  CAS  Google Scholar 

  58. Katsumi, A., Orr, A. W., Tzima, E., & Schwartz, M. A. (2004). Integrins in mechanotransduction. Journal of Biological Chemistry, 279, 12001–12004.

    Article  PubMed  CAS  Google Scholar 

  59. Geiger, B., Spatz, J. P., & Bershadsky, A. D. (2009). Envrionmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 10, 21–33.

    Article  PubMed  CAS  Google Scholar 

  60. Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., & Discher, D. (2004). Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal, 86, 617–628.

    Article  PubMed  CAS  Google Scholar 

  61. Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  62. Solon, J., Levental, I., Sengupta, K., Georges, P. C., & Janmey, P. A. (2007). Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical Journal, 93, 4453–4461.

    Article  PubMed  CAS  Google Scholar 

  63. Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., et al. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 60, 24–34.

    Article  PubMed  Google Scholar 

  64. Levental, I., Georges, P. C., & Janmey, P. A. (2006). Soft biological materials and their impact on cell function. Soft Matter, 3, 299–306.

    Article  CAS  Google Scholar 

  65. Teichert-Kuliszewska, K., Hamilton, B. S., Roncari, D. A., Kirkland, J. L., Gillon, W. S., Deitel, M., et al. (1996). Increasing vimentin expression associated with differentiation of human and rat preadipocytes. International Journal of Obesity and Related Metabolic Disorders, 20(Suppl 3), S108–S113.

    PubMed  CAS  Google Scholar 

  66. Gloushankova, N. A., Lyubimova, A. V., Tint, I. S., Feder, H. H., Vasiliev, J. M., & Gelfand, I. M. (1994). Role of the microtubular system in morphological organization of normal and oncogene-transfected epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 91, 8597–8601.

    Article  PubMed  CAS  Google Scholar 

  67. Kadi, A., Pichard, V., Lehmann, M., Briand, C., Braguer, D., Marvaldi, J., et al. (1998). Effect of microtubule disruption on cell adhesion and spreading. Biochemical and Biophysical Research Communications, 246, 690–695.

    Article  PubMed  CAS  Google Scholar 

  68. Liu, B. P., Chrzanowska-Wodnicka, M., & Burridge, K. (1998). Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein rho. Cell Adhesion and Communication, 5, 249–255.

    Article  PubMed  CAS  Google Scholar 

  69. Pletjushkina, O. J., Belkin, A. M., Ivanova, O. J., Oliver, T., Vasiliev, J. M., & Jacobson, K. (1998). Maturation of cell-substratum focal adhesions induced by depolymerization of microtubules is mediated by increased cortical tension. Cell Adhesion and Communication, 5, 121–135.

    Article  PubMed  CAS  Google Scholar 

  70. Danowski, B. A. (1989). Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. Journal of Cell Sciences, 93, 255–266.

    CAS  Google Scholar 

  71. Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A., & Geiger, B. (1996). Involvement of microtubules in the control of adhesion-dependent signal transduction. Current Biology, 6, 1279–1289.

    Article  PubMed  CAS  Google Scholar 

  72. Kaverina, I., Krylyshkina, O., & Small, J. V. (2002). Regulation of substrate adhesion dynamics during cell motility. International Journal of Biochemistry and Cell Biology, 34, 746–761.

    Article  PubMed  CAS  Google Scholar 

  73. Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D., & Geiger, B. (2003). Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. Journal of Cell Sciences, 116, 975–986.

    Article  CAS  Google Scholar 

  74. Zhang, Q., Magnusson, M. K., & Mosher, D. F. (1997). Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Molecular Biology of the Cell, 8, 1415–1425.

    PubMed  CAS  Google Scholar 

  75. Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y., et al. (2005). Visualizing the mechanical activation of Src. Nature, 434, 1040–1045.

    Article  PubMed  CAS  Google Scholar 

  76. Head, B. P., Patel, H. H., Roth, D. M., Murray, F., Swaney, J. S., Niesman, I. R., et al. (2006). Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. Journal of Biological Chemistry, 281, 26391–26399.

    Article  PubMed  CAS  Google Scholar 

  77. Arnsdorf, E. J., Tummala, P., Kwon, R. Y., & Jacobs, C. R. (2009). Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. Journal of Cell Sciences, 122, 546–553.

    Article  CAS  Google Scholar 

  78. Karl, I., & Bereiter-Hahn, J. (1998). Cell contraction caused by microtubule disruption is accompanied by shape changes and an increased elasticity measured by scanning acoustic microscopy. Cell Biochemistry and Biophysics, 35, 76–82.

    Google Scholar 

  79. Szabo, E., Papp, S., & Opas, M. (2007). Differential calreticulin expression affects focal contacts via the calmodulin/Camk II pathway. Journal of Cellular Physiology, 213, 269–277.

    Article  PubMed  CAS  Google Scholar 

  80. Lin, Y. C., & Redmond, L. (2008). CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proceedings of the National Academy of Sciences of the United States of America, 105, 15791–15796.

    Article  PubMed  Google Scholar 

  81. Bouvard, D., Molla, A., & Block, M. R. (1998). Calcium/calmodulin-dependent protein kinase II controls α5β1 integrin-mediated inside-out signaling. Journal of Cell Sciences, 111, 657–665.

    CAS  Google Scholar 

  82. Bouvard, D., & Block, M. R. (1998). Calcium/calmodulin-dependent protein kinase II controls integrin α5β1-mediated cell adhesion through the integrin cytoplasmic domain associated protein-1alpha. Biochemical and Biophysical Research Communications, 252, 46–50.

    Article  PubMed  CAS  Google Scholar 

  83. Easley, C. A., Brown, C. M., Horwitz, A. F., & Tombes, R. M. (2008). CaMK-II promotes focal adhesion turnover and cell motility by inducing tyrosine dephosphorylation of FAK and paxillin. Cell Motility and the Cytoskeleton, 65, 662–674.

    Article  PubMed  CAS  Google Scholar 

  84. Liu, X., & Jefcoate, C. (2006). 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and epidermal growth factor cooperatively suppress peroxisome proliferator-activated receptor-gamma1 stimulation and restore focal adhesion complexes during adipogenesis: selective contributions of Src, Rho, and Erk distinguish these overlapping processes in C3H10T1/2 cells. Molecular Pharmacology, 70, 1902–1915.

    Article  PubMed  CAS  Google Scholar 

  85. Li, J. J., & Xie, D. (2007). Cleavage of focal adhesion kinase (FAK) is essential in adipocyte differentiation. Biochemical and Biophysical Research Communications, 357, 648–654.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Marek Michalak for his generosity with anti-calreticulin antibodies and to Dr. Sylvia Papp for critical reading of the manuscript. M.O. is a member of the Heart & Stroke/Richard Lewar Centre of Excellence. This work was supported by grants from CIHR (MPO-36384) and from the Heart and Stroke Foundation of Ontario (T 6181).

Disclaimer

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Opas.

Additional information

T. Feng: Collection and assembly of data, Data analysis and interpretation, Manuscript writing E. Szabo: Collection and assembly of data, Data analysis and interpretation E. Dziak: Collection of data M. Opas: Conception and design, Data analysis and interpretation, Manuscript writing and Final approval

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Cytochalasin D-treated cells contain an intact microtubule network. This composite shows three confocal sections taken through the top, middle and bottom of a cytochalasin D-treated WT ES cell clump. Intact microtubules can be detected in most of the cells, especially in the large cell endowed with a protrusion. Scale divisions: 10, 50 and 100 μm. (GIF 52 kb)

High Resolution

(TIFF 237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, T., Szabo, E., Dziak, E. et al. Cytoskeletal Disassembly and Cell Rounding Promotes Adipogenesis from ES Cells. Stem Cell Rev and Rep 6, 74–85 (2010). https://doi.org/10.1007/s12015-010-9115-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9115-8

Keywords

Navigation