Skip to main content

Advertisement

Log in

Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution and Altered Expression Levels of Mitotic Spindle Check-point Transcripts

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Human parthenogenetic embryos have recently been proposed as an alternative, less controversial source of embryonic stem cell (ESC) lines; however many aspects related to the biology of parthenogenetic embryos and parthenogenetic derived cell lines still need to be elucidated. We present here results on human cell lines (HP1 and HP3) derived from blastocysts obtained by oocyte parthenogenetic activation. Cell lines showed typical ESC morphology, expressed Oct-4, Nanog, Sox-2, Rex-1, alkaline phosphatase, SSEA-4, TRA 1-81 and had high telomerase activity. Expression of genes specific for different embryonic germ layers was detected from HP cells differentiated upon embryoid body (EBs) formation. Furthermore, when cultured in appropriate conditions, HP cell lines were able to differentiate into mature cell types of the neural and hematopoietic lineages. However, the injection of undifferentiated HP cells in immunodeficient mice resulted either in poor differentiation or in tumour formation with the morphological characteristics of myofibrosarcomas. Further analysis of HP cells indicated aberrant levels of molecules related to spindle formation as well as the presence of an abnormal number of centrioles and autophagic activity. Our results confirm and extend the notion that human parthenogenetic stem cells can be derived and can differentiate in mature cell types, but also highlight the possibility that, alteration of the proliferation mechanisms may occur in these cells, suggesting great caution if a therapeutic use of this kind of stem cells is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Vrana, K. E., Hipp, J. D., Goss, A. M., et al. (2003). Nonhuman primate parthenogenetic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 1), 11911–6.

    Article  CAS  PubMed  Google Scholar 

  2. Brevini, T. A., & Gandolfi, F. (2008). Parthenotes as a source of embryonic stem cells. Cell Proliferation, 41(Suppl 1), 20–30.

    PubMed  Google Scholar 

  3. Brevini, T. A. L., Pennarossa, G., Antonini, S., & Gandolfi, F. (2008). Parthenogenesis as an approach to pluripotency: Advantages and limitations involved. Stem Cell Review. doi:10.1007/s12015-008-9027-z.

  4. Surani, M. A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature, 414(6859), 122–8.

    Article  CAS  PubMed  Google Scholar 

  5. Allen, N. D., Barton, S. C., Hilton, K., Norris, M. L., & Surani, M. A. (1994). A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development, 120(6), 1473–82.

    CAS  PubMed  Google Scholar 

  6. Kaufman, M. H., Robertson, E. J., Handyside, A. H., & Evans, M. J. (1983). Establishment of pluripotential cell lines from haploid mouse embryos. Journal of Embryology and Experimental Morphology, 73, 249–61.

    CAS  PubMed  Google Scholar 

  7. Dighe, V., Clepper, L., Pedersen, D., et al. (2008). Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells, 26(3), 756–66.

    Article  CAS  PubMed  Google Scholar 

  8. Cibelli, J. B., Grant, K. A., Chapman, K. B., et al. (2002). Parthenogenetic stem cells in nonhuman primates. Science, 295(5556), 819.

    Article  CAS  PubMed  Google Scholar 

  9. Lin, G., OuYang, Q., Zhou, X., et al. (2007). A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Research, 17(12), 999–1007.

    Article  CAS  PubMed  Google Scholar 

  10. Mai, Q., Yu, Y., Li, T., et al. (2007). Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Research, 17(12), 1008–19.

    Article  CAS  PubMed  Google Scholar 

  11. Revazova, E. S., Turovets, N. A., Kochetkova, O. D., et al. (2008). HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning and Stem Cells, 10(1), 1–14.

    Article  CAS  Google Scholar 

  12. Revazova, E. S., Turovets, N. A., Kochetkova, O. D., et al. (2007). Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning and Stem Cells, 9, 432–49.

    Article  CAS  PubMed  Google Scholar 

  13. Paffoni, A., Brevini, T. A., Somigliana, E., Restelli, L., Gandolfi, F., & Ragni, G. (2007). In vitro development of human oocytes after parthenogenetic activation or intracytoplasmic sperm injection. Fertility and Sterility, 87(1), 77–82.

    Article  PubMed  Google Scholar 

  14. Michor, F., Iwasa, Y., Vogelstein, B., Lengauer, C., & Nowak, M. A. (2005). Can chromosomal instability initiate tumorigenesis? Seminars in Cancer Biology, 15(1), 43–9.

    Article  CAS  PubMed  Google Scholar 

  15. Geigl, J. B., Obenauf, A. C., Schwarzbraun, T., & Speicher, M. R. (2008). Defining 'chromosomal instability'. Trends in Genetics, 24(2), 64–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kuliev, A., Cieslak, J., Ilkevitch, Y., & Verlinsky, Y. (2003). Chromosomal abnormalities in a series of 6, 733 human oocytes in preimplantation diagnosis for age-related aneuploidies. Reprod Biomed Online, 6(1), 54–9.

    Article  PubMed  Google Scholar 

  17. Kuliev, A., Cieslak, J., & Verlinsky, Y. (2005). Frequency and distribution of chromosome abnormalities in human oocytes. Cytogenetic and Genome Research, 111(3–4), 193–8.

    Article  CAS  PubMed  Google Scholar 

  18. Magli, M. C., Ferraretti, A. P., Crippa, A., Lappi, M., Feliciani, E., & Gianaroli, L. (2006). First meiosis errors in immature oocytes generated by stimulated cycles. Fertility and Sterility, 86(3), 629–35.

    Article  PubMed  Google Scholar 

  19. Benagiano, G., & Gianaroli, L. (2004). The new Italian IVF legislation. Reprod Biomed Online, 9(2), 117–25.

    PubMed  Google Scholar 

  20. Ragni, G., Allegra, A., Anserini, P., et al. (2005). The 2004 Italian legislation regulating assisted reproduction technology: a multicentre survey on the results of IVF cycles. Human Reproduction, 20(8), 2224–8.

    Article  CAS  PubMed  Google Scholar 

  21. Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K., & Daley, G. Q. (2004). Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 427(6970), 148–54.

    Article  CAS  PubMed  Google Scholar 

  22. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–7.

    Article  CAS  PubMed  Google Scholar 

  23. Cibelli, J. B., Kiessling, A. A., Cunniff, K., Richards, C., Lanza, R. P., & West, M. D. (2001). Somatic cell nuclear transfer in humans: pronuclear and early embryonic development. The Journal of Regenerative Medicine, 2, 25–31.

    Article  Google Scholar 

  24. Lin, H., Lei, J., Wininger, D., et al. (2003). Multilineage potential of homozygous stem cells derived from metaphase II oocytes. Stem Cells, 21(2), 152–61.

    Article  PubMed  Google Scholar 

  25. Rogers, N. T., Hobson, E., Pickering, S., Lai, F. A., Braude, P., & Swann, K. (2004). Phospholipase Czeta causes Ca2+ oscillations and parthenogenetic activation of human oocytes. Reproduction, 128(6), 697–702.

    Article  CAS  PubMed  Google Scholar 

  26. Armstrong, L., Lako, M., Lincoln, J., Cairns, P. M., & Hole, N. (2000). mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mechanisms of Development, 97(1–2), 109–16.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, N. W., Piatyszek, M. A., Prowse, K. R., et al. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science, 266(5193), 2011–5.

    Article  CAS  PubMed  Google Scholar 

  28. Dinger, T. C., Eckardt, S., Choi, S. W., et al. (2008). Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro. Stem Cells, 26(6), 1474–83.

    Article  CAS  PubMed  Google Scholar 

  29. Eckardt, S., Leu, N. A., Bradley, H. L., Kato, H., Bunting, K. D., & McLaughlin, K. J. (2007). Hematopoietic reconstitution with androgenetic and gynogenetic stem cells. Genes and Development, 21(4), 409–19.

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe, K., Ogura, G., Tajino, T., Hoshi, N., & Suzuki, T. (2001). Myofibrosarcoma of the bone: a clinicopathologic study. American Journal of Surgical Pathology, 25(12), 1501–7.

    Article  CAS  PubMed  Google Scholar 

  31. Mann, J. R., Gadi, I., Harbison, M. L., Abbondanzo, S. J., & Stewart, C. L. (1990). Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell, 62(2), 251–60.

    Article  CAS  PubMed  Google Scholar 

  32. Sathananthan, A. H., Selvaraj, K., Girijashankar, M. L., Ganesh, V., Selvaraj, P., & Trounson, A. O. (2006). From oogonia to mature oocytes: inactivation of the maternal centrosome in humans. Microscopy Research and Technique, 69(6), 396–407.

    Article  PubMed  Google Scholar 

  33. Schatten, G., Simerly, C., & Schatten, H. (1991). Maternal inheritance of centrosomes in mammals? Studies on parthenogenesis and polyspermy in mice. Proceedings of the National Academy of Sciences of the United States of America, 88(15), 6785–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, G. J., Simerly, C., Zoran, S. S., Funte, L. R., & Schatten, G. (1996). Microtubule and chromatin dynamics during fertilization and early development in rhesus monkeys, and regulation by intracellular calcium ions. Biology of Reproduction, 55(2), 260–70.

    Article  CAS  PubMed  Google Scholar 

  35. Zamboni, L., & Mastroianni, L. (1966). Electron miroscopic studies of rabbit ova.: The follicular oocyte. Journal of Ultrastructure Research, 14, 95–117.

    Article  Google Scholar 

  36. Navara, C. S., First, N. L., & Schatten, G. (1994). Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster. Developmental Biology, 162(1), 29–40.

    Article  CAS  PubMed  Google Scholar 

  37. Paweletz, N., Mazia, D., & Finze, E. M. (1987). Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. I. The structure and behavior of centrosomes before fusion of the pronuclei. European Journal of Cell Biology, 44(2), 195–204.

    CAS  PubMed  Google Scholar 

  38. Gard, D. L., Affleck, D., & Error, B. M. (1995). Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes: II. A developmental transition in microtubule organization during early diplotene. Developmental Biology, 168(1), 189–201.

    Article  CAS  PubMed  Google Scholar 

  39. Manandhar, G., Schatten, H., & Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biology of Reproduction, 72(1), 2–13.

    Article  CAS  PubMed  Google Scholar 

  40. Kato, K. H., & Sugiyama, M. (1971). On the de novo formation of the centriole in the activated sea urchin egg. Development, Growth and Differentiation, 13(4), 359–66.

    Article  CAS  PubMed  Google Scholar 

  41. Miki-Noumura, T. (1977). Studies on the de novo formation of centrioles: aster formation in the activated eggs of sea urchin. Journal of Cell Science, 24, 203–16.

    CAS  PubMed  Google Scholar 

  42. Riparbelli, M. G., & Callaini, G. (2003). Drosophila parthenogenesis: a model for de novo centrosome assembly. Developmental Biology, 260(2), 298–313.

    Article  CAS  PubMed  Google Scholar 

  43. Hara, K., Tydeman, P., & Kirschner, M. (1980). A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proceedings of the National Academy of Sciences of the United States of America, 77(1), 462–6.

    Article  CAS  PubMed  Google Scholar 

  44. Marshall, W. F. (2007). Stability and robustness of an organelle number control system: modeling and measuring homeostatic regulation of centriole abundance. Biophysical Journal, 93(5), 1818–33.

    Article  CAS  PubMed  Google Scholar 

  45. Surani, M. A. (2002). Genetics: immaculate misconception. Nature, 416(6880), 491–3.

    Article  CAS  PubMed  Google Scholar 

  46. Santos, T. A., Dias, C., Henriques, P., et al. (2003). Cytogenetic analysis of spontaneously activated noninseminated oocytes and parthenogenetically activated failed fertilized human oocytes-implications for the use of primate parthenotes for stem cell production. Journal of Assisted Reproduction and Genetics, 20(3), 122–30.

    Article  PubMed  Google Scholar 

  47. Cheng, W. M., Sun, X. L., An, L., et al. (2007). Effect of different parthenogenetic activation methods on the developmental competence of in vitro matured porcine oocytes. Animal Biotechnology, 18(2), 131–41.

    Article  CAS  PubMed  Google Scholar 

  48. Winger, Q. A., De La Fuente, R., King, W. A., Armstrong, D. T., & Watson, A. J. (1997). Bovine parthenogenesis is characterized by abnormal chromosomal complements: implications for maternal and paternal co-dependence during early bovine development. Developmental Genetics, 21(2), 160–6.

    Article  CAS  PubMed  Google Scholar 

  49. Chung, E., & Chen, R. H. (2002). Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Molecular Biology of the Cell, 13(5), 1501–11.

    Article  CAS  PubMed  Google Scholar 

  50. Mayer, C., Filopei, J., Batac, J., Alford, L., & Paluh, J. L. (2006). An extended anaphase signaling pathway for Mad2p includes microtubule organizing center proteins and multiple motor-dependent transitions. Cell Cycle, 5(13), 1456–63.

    CAS  PubMed  Google Scholar 

  51. May, K. M., & Hardwick, K. G. (2006). The spindle checkpoint. Journal of Cell Science, 119(Pt 20), 4139–42.

    Article  CAS  PubMed  Google Scholar 

  52. Morito, Y., Terada, Y., Nakamura, S., et al. (2005). Dynamics of Microtubules and Positioning of Female Pronucleus During Bovine Parthenogenesis. Biology of Reproduction, 73(5), 935–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Research grant from ‘Fondazione II Sangue’, Milan, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana A. L. Brevini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brevini, T.A.L., Pennarossa, G., Antonini, S. et al. Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution and Altered Expression Levels of Mitotic Spindle Check-point Transcripts. Stem Cell Rev and Rep 5, 340–352 (2009). https://doi.org/10.1007/s12015-009-9086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9086-9

Keywords

Navigation