Skip to main content

Advertisement

Log in

Catalpol Inhibited the Proliferation of T24 Human Bladder Cancer Cells by Inducing Apoptosis Through the Blockade of Akt-Mediated Anti-apoptotic Signaling

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Catalpol is an iridoid glucoside extracted from the traditional Chinese medicinal plant called Rehmannia glutinosa, and it is reported to possess a variety of pharmacological activities. The goal of this research was to explore the effect of catalpol on the human bladder cancer cells T24. The cells were treated for different durations with various concentrations of catalpol. Then the viability, mobility, and invasiveness of the cells were determined by MTT assay and flow cytometry, respectively. Catalpol was found to significantly suppress the proliferation, migration, and invasiveness of T24 bladder cancer cells in a dose- and time-dependent manner. The results also revealed that catalpol promoted apoptosis and caused the cell-cycle arrest at G2/M phase. Furthermore, the catalpol-mediated apoptosis was found to involve the modulation of PI3K/Akt pathway and inhibit the expression of anti-apoptotic B cell lymphoma-2 (Bcl-2) family proteins. Also, the expressions of Bcl-2 proapoptotic effectors, Bcl-2-associated X protein, and Bcl-2 associated death promoter were up-regulated in the cells treated with catalpol. The enzymes involved in the ultimate process of apoptosis, active caspase-3 and poly ADP ribose polymerase were elevated, and the latter was observed to be cleaved, indicating that catalpol-accelerated cell apoptosis involved a caspase-dependent pathway. These results suggest that catalpol might serve to be a promising therapeutic agent for the treatment of human bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong, Z., & Chen, C. X. (2013). Effect of catalpol on diabetic nephropathy in rats. Phytomedicine, 20, 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  2. Feng, Y., Liu, Z., Peng, Y., et al. (2013). Validated LC-MS method for simultaneous quantitation of catalpol and harpagide in rat plasma: Application to a comparative pharmacokinetic study in normal and diabetic rats after oral administration of Zeng-Ye-Decoction. Biomedical Chromatography, 27, 1503–1510.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, C., Chen, Z., Xu, F., et al. (2013). Radio-protective effect of catalpol in cultured cells and mice. Journal of Radiation Research, 54, 76–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Chen, W., Li, X., Jia, L. Q., et al. (2013). Neuroprotective activities of catalpol against CaMKII-dependent apoptosis induced by LPS in PC12 cells. British Journal of Pharmacology, 169, 1140–1152.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Choi, H. J., Jang, H. J., Chung, T. W., et al. (2013). Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells. Fitoterapia, 86, 19–28.

    Article  CAS  PubMed  Google Scholar 

  6. Bi, J., Jiang, B., Zorn, A., et al. (2013). Catalpol inhibits LPS plus IFN-gamma-induced inflammatory response in astrocytes primary cultures. Toxicology in Vitro, 27, 543–550.

    Article  CAS  PubMed  Google Scholar 

  7. Wan, D., Xue, L., Zhu, H., et al. (2013). Catalpol induces neuroprotection and prevents memory dysfunction through the cholinergic system and BDNF. Evidence-Based Complementary and Alternative Medicine, 2013, 134852.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Zhang, X., Jin, C., Li, Y., et al. (2013). Catalpol improves cholinergic function and reduces inflammatory cytokines in the senescent mice induced by d-galactose. Food and Chemical Toxicology, 58, 50–55.

    Article  CAS  PubMed  Google Scholar 

  9. Huang, C., Cui, Y., Ji, L., et al. (2013). Catalpol decreases peroxynitrite formation and consequently exerts cardioprotective effects against ischemia/reperfusion insult. Pharmaceutical Biology, 51, 463–473.

    Article  CAS  PubMed  Google Scholar 

  10. Saracoglu, I., & Harput, U. S. (2012). In vitro cytotoxic activity and structure activity relationships of iridoid glucosides derived from Veronica species. Phytotherapy Research, 26, 148–152.

    Article  CAS  PubMed  Google Scholar 

  11. Saracoglu, I., Oztunca, F. H., Nagatsu, A., et al. (2011). Iridoid content and biological activities of Veronica cuneifolia subsp. cuneifolia and V. cymbalaria. Pharmaceutical Biology, 49, 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  12. Pungitore, C. R., Leon, L. G., Garcia, C., et al. (2007). Novel antiproliferative analogs of the Taq DNA polymerase inhibitor catalpol. Bioorganic & Medicinal Chemistry Letters, 17, 1332–1335.

    Article  CAS  Google Scholar 

  13. Nguyen, A. T., Fontaine, J., Malonne, H., et al. (2005). A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry, 66, 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  14. Pungitore, C. R., Ayub, M. J., Borkowski, E. J., et al. (2004). Inhibition of Taq DNA polymerase by catalpol. Cellular and Molecular Biology (Noisy-Le-Grand), 50, 767–772.

    CAS  Google Scholar 

  15. Zhu, Y., Mao, Y., Chen, H., et al. (2013). Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells. Cancer Cell International, 13, 54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Shen, Z., Shen, T., Wientjes, M. G., O’Donnell, M. A., & Au, J. L. (2008). Intravesical treatments of bladder cancer. Pharmaceutical Research, 25(7), 1500–1510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bai, L., Chen, J., McEachern, D., Liu, L., Zhou, H., et al. (2014). BM-1197: A novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS One, 9(6), e99404.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zhou, B., Li, Y., Deng, Q., et al. (2013). SRPK1 contributes to malignancy of hepatocellular carcinoma through a possible mechanism involving PI3K/Akt. Molecular and Cellular Biochemistry, 379, 191–199.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, S., Zhu, W., Li, C., et al. (2013). alpha-Lipoic acid attenuates LPS-induced cardiac dysfunction through a PI3K/Akt-dependent mechanism. International Immunopharmacology, 16, 100–107.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, X., Wang, H., Ou-Yang, X. N., et al. (2013). Research on drug resistance mechanism of trastuzumab caused by activation of the PI3K/Akt signaling pathway. Contemporary Oncology (Poznan), 17, 363–369.

    CAS  Google Scholar 

  21. Ma, Y., Lu, C., Li, C., et al. (2013). Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism. Biochimica et Biophysica Acta, 1832, 57–66.

    Article  CAS  PubMed  Google Scholar 

  22. FrankeTF, Hornik C. P., Segev, L., Shostak, G. A., & Sugimoto, C. (2003). PI3K/Akt and apoptosis: Size matters. Oncogene, 22, 8983–8998.

    Article  Google Scholar 

  23. Lee, K. M., Kang, H. A., Park, M., et al. (2012). Interleukin-24 suppresses the growth of vascular smooth muscle cells by inhibiting H(2)O(2)-induced reactive oxygen species production. Pharmacology, 90, 332–341.

    Article  CAS  PubMed  Google Scholar 

  24. Miyake, N., Chikumi, H., Takata, M., et al. (2012). Rapamycin induces p53-independent apoptosis through the mitochondrial pathway in non-small cell lung cancer cells. Oncology Reports, 28, 848–854.

    CAS  PubMed  Google Scholar 

  25. Noori, S., & Hassan, Z. M. (2012). Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1 arrest and apoptosis. Free Radical Biology and Medicine, 52, 1987–1999.

    Article  CAS  PubMed  Google Scholar 

  26. Ma, Y., Hao, X., Zhang, S., et al. (2012). The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Research and Treatment, 133, 473–485.

    Article  CAS  PubMed  Google Scholar 

  27. Lu, J., Wang, Y., Zhao, W., et al. (2014). Effects of catalpol, l-shikonin and paeonol extracted from radix rehmanniae, radix arnebiaeand cortex moutan on KGF-induced HaCaT cell proliferation. Zhonghua Yi Xue Za Zhi, 94, 1265–1269.

    CAS  PubMed  Google Scholar 

  28. Garcia, C., Leon, L. G., Pungitore, C. R., et al. (2010). Enhancement of antiproliferative activity by molecular simplification of catalpol. Bioorganic and Medicinal Chemistry, 18, 2515–2523.

    Article  CAS  PubMed  Google Scholar 

  29. Alnemri, E. S. (1997). Mammalian cell death proteases: A family of highly conserved aspartate specific cysteine proteases. Journal of Cellular Biochemistry, 64(1), 33–42.

    Article  CAS  PubMed  Google Scholar 

  30. Majeed, R., Hamid, A., Sangwan, P. L., Chinthakindi, P. K., Koul, S., Rayees, S., et al. (2014). Inhibition of phophotidylinositol-3 kinase pathway by a novel naphthol derivative of betulinic acid induces cell cycle arrest and apoptosis in cancels of different origin. Cell Death and Disease, 5, e1459.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hsu, Y. Y., Liu, C. M., Tsai, H. H., et al. (2010). KMUP-1 attenuates serum deprivation-induced neurotoxicity in SH-SY5Y cells: Roles of PKG, PI3K/Akt and Bcl-2/Bax pathways. Toxicology, 268, 46–54.

    Article  CAS  PubMed  Google Scholar 

  32. Moon, D. O., Kim, M. O., Choi, Y. H., et al. (2008). Beta-Sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Letters, 264, 181–191.

    Article  CAS  PubMed  Google Scholar 

  33. Jin, Y. P., Fishbein, M. C., Said, J. W., et al. (2004). Anti-HLA class I antibody-mediated activation of the PI3K/Akt signaling pathway and induction of Bcl-2 and Bcl-xL expression in endothelial cells. Human Immunology, 65, 291–302.

    Article  CAS  PubMed  Google Scholar 

  34. Isabelle, M., Moreel, X., Gagné, J. P., Rouleau, M., Ethier, C., Gagné, P., et al. (2010). Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Science, 8, 22.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Pawlowski, J., & Kraft, A. S. (2000). Bax-induced apoptotic cell deat. Proceedings of National Academy of Sciences, 97(2), 529–531.

    Article  CAS  Google Scholar 

  36. Hu, W., Shen, T., & Wang, M. H. (2011). Cell cycle arrest and apoptosis induced by methyl 3,5-dicaffeoyl quinate in human colon cancer cells: Involvement of the PI3K/Akt and MAP kinase pathways. Chemico-Biological Interactions, 194, 48–57.

    Article  CAS  PubMed  Google Scholar 

  37. Roy, S. K., Srivastava, R. K., & Shankar, S. (2010). Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. Journal of Molecular Signaling, 5, 10.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haige Chen.

Additional information

Dr. Di Jin and Dr. Ming Cao have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, D., Cao, M., Mu, X. et al. Catalpol Inhibited the Proliferation of T24 Human Bladder Cancer Cells by Inducing Apoptosis Through the Blockade of Akt-Mediated Anti-apoptotic Signaling. Cell Biochem Biophys 71, 1349–1356 (2015). https://doi.org/10.1007/s12013-014-0355-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0355-0

Keywords

Navigation